首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to find the theoretical solution of a dynamic Sylvester equation (DSE) in noisy environment, a robust fast convergence zeroing neural network (RFCZNN) is proposed in this paper. Unlike the original zeroing neural network (ZNN) model with existing activation functions (AF), by introducing a new AF, the proposed RFCZNN model guarantees fixed-time convergence to theoretical solution of DSE and robustness against noise simultaneously. The effectiveness and robustness of the proposed RFCZNN model are investigated in theory and demonstrated through simulation results. In addition, its effectiveness and robustness are further verified by a successful robotic trajectory tracking application in noisy environment.  相似文献   

2.
The complex-valued flow matrix Drazin inverse has recently attracted considerable interest from researchers due to its great academic value. In this paper, a fixed-time convergence integral-enhanced zeroing neural network (FTCIEZNN) model is proposed and investigated for calculating the Drazin inverse of complex-valued flow matrix. Since the FTCIEZNN model possesses fixed-time convergence, its upper limit of convergence time is irrelevant to initial conditions and can be adjusted by specified system parameters. Meanwhile, by adopting the newly designed reformed nonlinear activation function (RNAF) and variable parameters, the FTCIEZNN model converges rapidly in a relatively fast fixed-time and its robustness is dramatically strengthened. In addition, the upper limit of the convergence time in the absence of noise and the upper limit of the steady-state error in the presence of time-varying bounded noise are given by a scrupulous mathematical logic calculation. Furthermore, the outcomes of the numerical simulations demonstrate that the FTCIEZNN model outshines existing zeroing neural network models in calculating complex-valued flow matrix Drazin inverse. Finally, an application based on the FTCIEZNN model in image encryption fully illustrates the practical value of the FCIEZNN model.  相似文献   

3.
A novel finite-time complex-valued zeroing neural network (FTCVZNN) for solving time-varying Sylvester equation is proposed and investigated. Asymptotic stability analysis of this network is examined with any general activation function satisfying a condition or with an odd monotonically increasing activation function. So far, finite-time model studies have been investigated for the upper bound time of convergence using a linear activation function with design formula for the derivative of the error or with variations of sign-bi-power activation functions to zeroing neural networks. A function adaptive coefficient for sign-bi-power activation function (FA-CSBP) is introduced and examined for faster convergence. An upper bound on convergence time is derived with the two components in the function adaptive coefficients of sign-bi-power activation function. Numerical simulation results demonstrate that the FTCVZNN with function adaptive coefficient for sign-bi-power activation function is faster than applying a sign-bi-power activation function to the zeroing neural network (ZNN) and the other finite-time complex-valued models for the selected example problems.  相似文献   

4.
In this paper, for solving future equation systems, two novel discrete-time advanced zeroing neural network models are proposed, analyzed and investigated. First of all, by using integral-type error function and twice zeroing neural network (or termed, Zhang neural network) formula, as the preliminaries and bases of future problems solving, two continuous-time advanced zeroing neural network models are presented for solving continuous time-variant equation systems. Secondly, a one-step-ahead numerical differentiation rule termed 5-instant discretization formula is presented for the first-order derivative approximation with higher computational precision. By exploiting the presented 5-instant discretization formula to discretize the continuous-time advanced zeroing neural network models, two novel discrete-time advanced zeroing neural network models are proposed. Theoretical analyses on the convergence and precision of the discrete-time advanced zeroing neural network models are proposed. In addition, in the presence of disturbance, the proposed discrete-time advanced zeroing neural network models still possess excellent performance. Comparative numerical experimental results further substantiate the efficacy and superiority of the proposed discrete-time advanced zeroing neural network models for solving the future equation systems.  相似文献   

5.
Stuck in the speed and dimensionality of settling time-variant linear matrix inequality (LMI), this paper for the first time proposes two finite-time variable parameter zeroing neural network (FTVPZNN) models to settle the time-variant LMI. The first model is called the FTVPZNN-C model activated by the conventional sign-bi-power (S-B-P) function. The second model is called the FTVPZNN-T model activated by a tunable parameter S-B-P function. Different from the finite-time fixed-value zeroing neural network (FTFZNN) model, the proposed FTVPZNN models with variable parameters have better convergence performance and smaller upper bounds of finite-time convergence. Three theorems are presented to guarantee the stability and finite-time convergence of the FTVPZNN models. Especially, through detailed theoretical analysis and calculations, the finite-time convergence upper bounds of the proposed FTVPZNN models are obtained. Finally, a numerical simulative example is given to affirm the effectiveness and excellent convergent performance of the proposed models for settling the time-variant LMI.  相似文献   

6.
At present, there are few studies on solving time-variant linear equality and inequality systems (TVLEIS) under noise interference, and the numerical algorithm has limitations in solving the TVLEIS problems. Therefore, to determine the online solution of the TVLEIS in a complex environment, two prescribed-time robust zeroing neural network (PTRZNN) models are proposed, investigated, and verified in this paper. The PTRZNN models have a faster convergence rate and superior robustness compared with other zeroing neural network models activated by common activation functions. In addition, the detailed theoretical derivation of the prescribed-time convergence and robustness of the PTRZNN models is provided. The effectiveness and superiority of the PTRZNN models for determining the TVLEIS are further demonstrated by simulation results. It is worth mentioning that the design idea of the PTRZNN models is applied to the multi-agent system, which shows the practical value of the PTRZNN models.  相似文献   

7.
The present article is concerned with the fixed-time stability(FxTS) analysis of the nonlinear dynamical systems with impulsive effects. The novel criteria have been derived to achieve stability of the non-autonomous dynamical system in fixed-time under the effects of stabilizing and destabilizing impulses. The fixed time stability analysis due to the presence of destabilizing impulses in dynamical system, that leads to behavior of perturbing the systems’ stability, have not been addressed much in the existing literature. Therefore, two theorems are constructed here, for stabilizing and destabilizing impulses separately, to estimate the fixed-time convergence precisely by using the concept of Lyapunov functional and average impulsive interval. The theoretical derivation shows that the estimated fixed-time in this study is less conservative and more accurate as compared to the existing FxTS theorems. Further, the theoretical results are applied to the impulsive control of general neural network systems. Finally, two numerical examples are given to validate the effectiveness of the theoretical results.  相似文献   

8.
This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.  相似文献   

9.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

10.
In a fixed-time control system, the convergence rate and the fixed settling time are two important performance indexes. In this paper, a novel fixed-time control law is proposed and designed to control a class of coupled delayed Cohen-Grossberg neural networks to achieve synchronization with fast convergence rate within a fixed settling time. It should be emphasized that the derived settling time approach can provide a tighter settling time to more effectively reflect the performance for fast convergence rate of the considered controlled system. Moreover, to show the advantages of the proposed fixed-time control law and the derived fixed settling time approach, the existing related control laws and fixed settling time approaches are further discussed. In addition, the obtained fixed-time synchronization control theory is applied to a secure communication scenario, which further shows the feasibility and innovation of the addressed theoretical results.  相似文献   

11.
In this paper, a modified adaptive neural network for the compensation of deadzone is described, and simulated on a hydraulic positioning system, in which the dynamic model is separated into a series of connection of a nonlinear (deadzone) subsystem and a linear plant. The proposed approach uses two neural networks. One is the radial basis function (RBF) neural network, which is used for identifying parameters of deadzone. Based on the penalty function used in optimization theory, a multi-objective cost function with constraint is adopted to provide the best deadzone approximation. The result is used to train the other neural network for the inverse compensation of deadzone. The RBF neural network also generates the parameters of the linear plant for the design of an adaptive controller. A convergence analysis for the network training process is also presented.  相似文献   

12.
This paper mainly investigates the fixed-time synchronization of memristor-based fuzzy cellular neural network (MFCNN) with time-varying delay. By utilizing differential inclusion, set-valued map theory, the definitions of finite-time and fixed-time stability, we convert the fixed-time synchronization control of the drive-response MFCNN into the equivalent fixed-time stability problem of the error system between the drive-response systems. Some novel sufficient conditions are derived to guarantee the fixed-time synchronization of the drive-response MFCNN based on a simple Lyapunov function and a nonlinear feedback controller. Meanwhile, the settling time can be estimated by simple calculations. Furthermore, these fixed-time synchronization criteria here are easy to validate and extend to the MFCNN without time-varying delay and general memristor-based neural networks. Finally, three numerical examples are given to illustrate the correctness of the main results.  相似文献   

13.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

14.
In this paper, the fixed-time synchronization between two delayed complex networks with hybrid couplings is investigated. The internal delay, transmission coupling delay and self-feedback coupling delay are all included in the network model. By introducing and proving a new and important differential equality, and utilizing periodically semi-intermittent control, some fixed-time synchronization criteria are derived in which the settling time function is bounded for any initial values. It is shown that the control rate, network size and node dimension heavily influence the estimating for the upper bound of the convergence time of synchronization state. Finally, numerical simulations are performed to show the feasibility and effectiveness of the control methodology by comparing with the corresponding finite-time synchronization problem.  相似文献   

15.
《Journal of The Franklin Institute》2022,359(18):10849-10866
This paper considers neural network solutions of a category of matrix equation called periodic Sylvester matrix equation (PSME), which appear in the process of periodic system analysis and design. A linear gradient-based neural network (GNN) model aimed at solving the PSME is constructed, whose state is able to converge to the unknown matrix of the equation. In order to obtain a better convergence effect, the linear GNN model is extended to a nonlinear form through the intervention of appropriate activation functions, and its convergence is proved through theoretical derivation. Furthermore, the different convergence effects presented by the model with various activation functions are also explored and analyzed, for instance, the global exponential convergence and the global finite time convergence can be realized. Finally, the numerical examples are used to confirm the validity of the proposed GNN model for solving the PSME considered in this paper as well as the superiority in terms of the convergence effect presented by the model with different activation functions.  相似文献   

16.
In this paper, a robust fault tolerant control, which provides a global fixed-time stability, is proposed for robot manipulators. This approach is constructed based on an integration between a fixed-time second-order sliding mode observer (FxTSOSMO) and a fixed-time sliding mode control (FxTSMC) design strategy. First, the FxTSOSMO is developed to estimate the lumped disturbance with a fixed-time convergence. Then, based on the obtained disturbance estimation, the FxTSMC is developed based on a fixed-time sliding surface and a fixed-time reaching strategy to form a global fixed-time convergence of the system. The proposed approach is then applied for fault tolerant control of a PUMA560 robot and compared with other state-of-the-art controllers. The simulation results verify the outstanding fault estimation and fault accommodation capability of the proposed fault diagnosis observer and fault tolerant strategy, respectively.  相似文献   

17.
《Journal of The Franklin Institute》2022,359(18):10867-10883
Various forms of the algebraic Riccati equation (ARE) have been widely used to investigate the stability of nonlinear systems in the control field. In this paper, the time-varying ARE (TV-ARE) and linear time-varying (LTV) systems stabilization problems are investigated by employing the zeroing neural networks (ZNNs). In order to solve the TV-ARE problem, two models are developed, the ZNNTV-ARE model which follows the principles of the original ZNN method, and the FTZNNTV-ARE model which follows the finite-time ZNN (FTZNN) dynamical evolution. In addition, two hybrid ZNN models are proposed for the LTV systems stabilization, which combines the ZNNTV-ARE and FTZNNTV-ARE design rules. Note that instead of the infinite exponential convergence specific to the ZNNTV-ARE design, the structure of the proposed FTZNNTV-ARE dynamic is based on a new evolution formula which is able to converge to a theoretical solution in finite time. Furthermore, we are only interested in real symmetric solutions of TV-ARE, so the ZNNTV-ARE and FTZNNTV-ARE models are designed to produce such solutions. Numerical findings, one of which includes an application to LTV systems stabilization, confirm the effectiveness of the introduced dynamical evolutions.  相似文献   

18.
In this paper, a new design formula is presented to accelerate the convergence speed of a recurrent neural network, and applied to time-varying matrix square root finding in real time. Then, according to such a new design formula, a finite-time Zhang neural network (FTZNN) is proposed and investigated for finding time-varying matrix square root. In comparison with the original Zhang neural network (ZNN) model, the FTZNN model makes a breakthrough in the convergence performance (i.e., from infinite time to finite time). In addition, theoretical analyses of the design formula and the FTZNN model are provided in details. Comparative results further verify the superiority of the proposed FTZNN model to the original ZNN model for finding time-varying matrix square root.  相似文献   

19.
This article concentrates on pinning synchronization and adaptive synchronization problems of complex-valued inertial neural networks with time-varying delays in fixed-time interval. First, regarding complex-valued inertial neural networks model as an entirety instead of reducing this system to first-order differential equation, separating the real and imaginary parts of this system into an equivalent real-valued one, and establishing a novel Lyapunov function, the fixed-time stability for the closed-loop error system is guaranteed via partial nodes controlled directly by a new pinning controller which involves the state derivatives and other proper terms. Then, from the point of saving cost and avoiding resources waste, a new pinning adaptive controller is further developed and sufficient condition ensuring the adaptive fixed-time stability for the closed-loop error system is also derived. In the end, the effectiveness of these results is verified by a numerical example.  相似文献   

20.
This paper presents a fixed-time observer for a general class of linear time-delay systems. In contrast to many existing observers, which normally estimate system’s trajectory in an asymptotic fashion, the proposed observer estimates system’s state in a prescribed time. The proposed fixed-time observer is realized by updating the observer in an impulsive manner. Simulation results are also presented to illustrate the convergence behavior of the proposed fixed-time observer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号