首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

2.
In this paper, the dissipativity-based dynamic output feedback controller (DOFC) design for Semi-Markovian jump systems under stochastic cyber-attacks is first proposed. It is assumed that the time-varying uncertainties obey Bernoulli-distribution and transition probability matrix is time-varying and partially accessed. By utilizing the dissipativity-based technique, sufficient conditions for the existence of the DOFC are obtained to ensure the exponential stability with a strict dissipative performance of the resulted system. Next, the proposed results are improved by fractionalizing the time-varying transition probability matrix and the corresponding DOFC gains are obtained by cone complementarity linearization algorithm. Simulations results are provided to demonstrate the effectiveness and theoretical value of the proposed dissipativity-based DOFC design method.  相似文献   

3.
In this paper, the leader-following consensus issue is investigated for a class of nonlinear multi-agent systems with semi-Markov parameters subject to hybrid cyber-attacks. A semi-Markov chain is adopted to describe the variation of switching topologies caused by the complexity of the environment and makes the studied problem more general. Hybrid cyber-attacks consisting of denial-of-service attacks and deception attacks are described with the help of two groups of Bernoulli sequences which are assumed to be independent of each other. On this basis, a sufficient condition for the stability of the consensus error system is established by using linear matrix inequality techniques. Finally, the validity of the results obtained is verified by two numerical examples.  相似文献   

4.
《Journal of The Franklin Institute》2019,356(17):10260-10276
This paper is concerned with the problem of distributed event-triggered controller design for networked control systems (NCSs) with stochastic cyber-attacks. A decentralized event-triggered scheme is introduced to save the energy consumption and alleviate the transmission load of the network. Each sensor can make its own decision to determine whether the sampled data is delivered to the network or not. By taking two kinds of random cyber-attacks into consideration, a novel mathematical model is constructed for distributed event-triggered NCSs. Sufficient conditions which can guarantee the stability of the control system are obtained by applying Lyapunov stability theory, and the design method of the controller gain is presented in an exact expression. Finally, an example is given to demonstrate the effectiveness of the proposed method.  相似文献   

5.
6.
This paper studies the finite-time guaranteed cost control problem for switched nonlinear stochastic systems with parameter uncertainties and time-varying delays. By choosing a model-dependent and delay-dependent Lyapunov-Krasovskii functional, applying the average dwell time approach and the Gronwall inequality, some novel sufficient conditions are derived to ensure that the switched nonlinear stochastic closed-loop system is finite-time stochastically stable and an upper bound is given on the performance index. The obtained nonlinear matrix is transformed into a linear matrix form, and then the feedback controller gains of the switched nonlinear stochastic systems with time-varying delay are obtained. Finally, two simulation examples are designed to verify the effectiveness of the suggested approach.  相似文献   

7.
This paper investigates the non-fragile control for positive Markovian jump systems both in continuous-time and discrete-time cases with actuator uncertainty. It is assumed that the coefficient matrices of the non-fragile controller is unknown and bounded. The state-feedback controller gain consists of nominal controller gain and gain perturbation. First, a set of state-feedback controllers for the considered system are designed by using a stochastic co-positive Lyapunov function integrated with linear programming approach. Under the designed controllers, the resulting closed-loop systems are positive and stochastically stable. Then, the proposed controller design approach is extended to discrete-time systems. Through comparisons, it is shown that existing results are special cases of the presented ones in the paper. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

8.
A hidden Markov model based control strategy is proposed to ensure the exponential mean-square admissible (EMS-admissible) of singular Markov jump systems (SMJSs) with mode-dependent singular matrix in this paper. The discontinuities caused by the mode-dependent singular matrix and Markov jump switching are investigated to make the results more practical. Concrete controller designing process is presented to tackle the instabilities brought by the hidden Markov model and the discontinuities. A new kind of Lyapunov function is constructed to characterize the switching features presented by Markov jump system and hidden Markov model based controller, which derives the stability conditions of the SMJSs. Then, a linearization strategy is proposed to reduce the coupled terms generated by the hidden Markov model. The hidden Markov model based controller is further designed based on the established conditions to ensure the EMS-admissible of the considered SMJSs. A numerical example and a direct current (DC) motor example are given to illustrate the effectiveness of the control approach.  相似文献   

9.
This paper is focus on an event-triggered control design problem for nonlinear networked control systems with missing data and transmission delay in the interval type-2 (IT2) fuzzy form. An event-triggered controller is presented under a sampled-state-error mechanism. By dividing the event-triggered interval into some subsets, stability analysis is carried out based on Lyapunov-Krasovskii functional (LKF), and the stability of the closed-loop system is ensured. The proposed design is applied to the continuous stirred tank reactor system (CSTR) and the manipulator system. The control strategy is effective, and the merit of the event-triggered mechanism is indicated.  相似文献   

10.
11.
This paper considers the tracking control problem for nonlinear Markov jump systems based on T–S fuzzy model approach with incomplete mode information. It is assumed that the mode transition rate matrix is not a priori knowledge and only partial information is available. Moreover, the mode where the system stays when operating is not fully accessible to the designed controller. In this incomplete mode information scenario, a hidden Markov model based mechanism is modified to simulate the mode deficiency mapping. The incomplete transition rate matrix is well defined in the form of a polynomial. Based on this, by constructing a polynomially parameter-dependent Lyapunov matrices and linear matrix techniques, sufficient conditions are established to ensure the stochastic stability and a prescribed tracking performance. The controller design scheme are presented by solving a series of LMIs. Examples are given in the end to illustrate the effectiveness of our proposed results.  相似文献   

12.
13.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

14.
This paper investigates the event-triggered H control problem for network-based Markov jump systems subject to denial-of-service (DoS) attacks. In order to reduce the amount of signal transmission, the event-triggering scheme (ETS) is adopted between sensor and controller. Due to DoS attacks invalidating data over networks, a new switched time-delay Markov jump model with unstable subsystems is developed based on state feedback controller. Then with the help of piecewise Lyapunov-Krasovskii functional method, a set of sufficient conditions incorporating constraints of DoS attacks are provided, which guarantees that the resulting switched time-delay Markov jump system is stochastically stable with a certain H performance. Subsequently, we present criterions to obtain the parameters of state feedback gain and ETS. Finally, an example is provided to show the effectiveness of the proposed method.  相似文献   

15.
This paper aims to investigate the mean square consensus (MSC) problem of a class of nonlinear networked systems subject to directed and stochastic switching communication topologies, where the switching law is determined by an ergodic continuous-time Markov process. The cooperative consensus controller is designed by using an observer-based method. Firstly, for the case with Lur’e nonlinear dynamics, by developing a stochastic Lyapunov function, we show that the MSC under consideration can be realized if the union of the underlying network graphs has a directed spanning tree. It is worth noting that none of the network graphs is required to contain a directed spanning tree. Moreover, we study the MSC problem for networked systems with Lipschitz-type nonlinear dynamics. Finally, a numerical simulation is conducted on multiple Chua’s circuit systems to illustrate the effectiveness of the proposed controllers.  相似文献   

16.
17.
A class of networked nonlinear control systems with norm-bounded uncertainties is presented in this paper. The class is represented by Takagi–Sugeno (T-S) fuzzy models with packet processing. The network loop delay is considered either as known delay or random delay. For the former case, we develop conditions that guarantee the robust asymptotic stability and state-feedback stabilization with strict dissipativity and cast the results in linear matrix inequality (LMI) framework. Next employing a probabilistic-based delay partitioning method to deal with random delay, we establish novel LMI criteria for strict dissipative stability analysis and feedback synthesis. The efficacy of the ensuing techniques is demonstrated by numerical solution of typical examples and Mont Carlo simulation.  相似文献   

18.
19.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号