首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数形结合是中学数学中的一种重要的思想方法.“数”是指数量关系.“形”是指空间形式.数形结合的基本思想是:在研究问题的过程中.注意把数和形结合起来考察.或把几何图形转化为数龟关系问题.运用代数、三角知识进行讨论;或把数量关系转化为图形性质问题.借助几何知识加以解决.名数学家华罗庚对数形结合思想给予高度评价,指出“数形本是相倚依,焉能分作两边飞?  相似文献   

2.
李献新 《中学理科》2007,(10):21-22
数形结合是中学数学中的一种重要的思想方法.“数”是指数量关系,“形”是指空间形式.数形结合的基本思想是:在研究问题的过程中,注意把数和形结合起来考察.或者把几何图形转化为数量关系问题,运用代数、三角知识进行讨论;或者把数量关系转化为图形性质问题,借助几何知识加以解决.著名数学家华罗庚对数形结合思想给予高度评价,指出“数形本是相倚依,焉能分作两边飞?数缺形时少直觉,形少数时难人微,数形结合百般好,隔离分家万事休,[第一段]  相似文献   

3.
数形结合思想方法的应用   总被引:1,自引:0,他引:1  
数形结合思想是重要的数学思想之一,它是根据数学问题的条件和结论之问的内在联系,既分析研究对象的代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决.用数形结合的思想解决问题要灵活掌握,特别是解答不需要写出推演过程的客观题目时,如果能用数形结合的思想方法处理,确实可以提高我们的思维层次,简捷准确地找到答案.  相似文献   

4.
所谓数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决.数与形是数学研究中最古老,也是最本质的两个侧面,数形结合既是一种重要的数学思想,也是-种常用的数学方法。  相似文献   

5.
数形结合应注意的问题   总被引:1,自引:0,他引:1  
所谓数形结合就是根据数学问题的条件与结论之间的内在联系,即分析其代数含义又揭示其几何意义.使数量关系和空间形式巧妙和谐地结合起来,并充分利用这种“结合”寻找解题思路使问题得到解决.数形结合能使抽象问题直观化,复杂问题简单化,起到事半功倍的作用.但我们往往忽略以下几个注意点.  相似文献   

6.
数学是研究现实世界的空间形式和数量关系的科学.数形结合是中学数学的重要思想方法,数学家华罗庚先生说过:“数缺形时少直觉,形少数时难入微.数形结合百般好,隔离分家万事非.”运用数形结合的思想方法解题,既可体现数量与空间图形的辩证统一关系,又快捷简便,直观易懂.[第一段]  相似文献   

7.
所有的数学问题都是围绕数和形的提炼、演变、发展而展开的.每一个几何图形中都蕴藏着一定的数量关系,而数量关系常常又可以通过图形的直观性作出形象的描述.因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,揭示其几何意义,而形的问题又借助数去思考,分析其代数含义,使数量关系和空间形式巧...  相似文献   

8.
数形结合思想的实质是将代数语言与直观的图像结合起来,通过“数”与“形”的相互结合、相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数  相似文献   

9.
数形结合就是利用数量关系研究几何图形的性质,或利用几何图形的性质研究数量关系,也就是借助数形的相互转化来研究和解决数学问题,华罗庚教授指出“数无形时不直观,形无数时难入微”,数与形是数学中不可分割的两个部分,由数想形,则抽象问题具体而直观,以形助数,则直观问题易入微。因此数形结合,可将问题化难为易。下面通过实例进行分析,帮助同学们理解掌握好如何正确运用数形结合思想分析和解决问题。  相似文献   

10.
数与形有着密切的联系,我们常常用代数的方法去处理几何问题。也经常借助于几何图形来解决代数问题.这种数与形之间的相互应用.是一种重要的数学思想方法——数形结合.我们学习的数轴就是数与形的一次“联姻”,数轴使数与直线上的点建立了对应关系。揭示了数与形的内在联系.在学习有理数时。我们看看数轴和有理数是怎样联姻的。  相似文献   

11.
数形结合思想就是通过数、形之间的相互转化来研究和解决数学问题的思想.直角坐标系为“数”与“形”的沟通提供了工具,使抽象的数量关系有形象直观的几何意义,而直观图象的几何性质  相似文献   

12.
徐广华 《广东教育》2007,(10):18-20
"数形结合"就是根据数量与图形之间的对应关系,把抽象的数学语言与直观的图形相结合,使抽象思维和形象思维相结合,通过数与形的相互转化来解决数学问题的一种重要的数学思想,也是一种常用的数学方法.数形结合包括"以形助数"和"以数辅  相似文献   

13.
“数形结合”是重要的基本数学思想方法之一,但由于在认识和实践上尚存在一定的误区,以至有时还不能将这种思想的作用发挥到极致,或产生一些偏差,所以十分有必要对这种思想的认识和实践加以匡正,以便全面、准确地运用它,使它在解题中发挥出更加耀眼的光辉。  相似文献   

14.
数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性。“数缺形时少直观,形少数时难入微”。数和形相互联系,可用数来反映空间形式,也可以用形来说明数量关系。数形结合(或形数结合)就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题。这是一种重要的数学思维方法。  相似文献   

15.
1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷.所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.  相似文献   

16.
数学研究的是现实世界的空间形式和数量关系,“数”与“形”是相互联系、相互依存的.“问题”是数学及数学教育的心脏,“问题解决”是数学学习的目标,问题解决的核心就是寻找问题解决的策略.  相似文献   

17.
袁鑫 《中国考试》2000,(11):30-33
数形结合的解题方法,就是把数学问题中的数量关系和空间形式结合起来考虑的思维方法,其实质就是将抽象的数学语言与直观的图形结合起来,抽象思维和形象思维结合起来,使抽象问题具体化,复杂问题简单化,通过“数”和“形”的联系和转化,化难为易,从而使问题得到解决.一、“由形化数”.借助所给图形,仔细观察研究,揭示出图形中蕴含的数量关系,反映出事物的本质特征.  相似文献   

18.
杨屯云 《考试周刊》2009,(23):52-54
数量关系与现实世界空间形式是数学学科不可分割的一个整体,数与形的结合是数学学科最为突出的特点之一。因此,在数学的学习过程中我们必须逐步树立数形结合的思想,逐步学会用数形结合的方法来解决数学问题,逐步养成以形想数、以数思形的良好思维品质。可以这样说,没有树立起数形结合思想、不会随时灵活运用数形结合的方法来解决数学问题的人,一定学不好高中数学。  相似文献   

19.
纵观整个中学数学可以看到,中学数学研究的对象可分为两人部分,一部分是数,一部分足形。数是数量关系的体现,形是空间形式的体现,两者是对立统一的,  相似文献   

20.
谈家国 《考试周刊》2011,(31):66-67
数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想,通过"以形助数,以数解形",使复杂问题简单化,抽象问题具体化,它从形的直观和数的严谨两方面思考问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号