首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有关数列和型不等式的证明既是高考的重点题型,也是教材的难点.其思维跨度大、构造性强,能较好地考查学生思维的严谨性.其中,放缩法是证明数列和型不等式的常用方法,它能迅速化繁为简,达到事半功倍的效果.下面通过例题的形式,介绍利用放缩法证明此类不等式的几种策略.  相似文献   

2.
正有关数列型不等式的证明既是高考的重点题型,也是难点内容.其思维跨度大、构造性强,能较好地考查学生思维的严谨性.放缩法是证明数列型不等式的常用方法,它能迅速化繁为简,达到事半功倍的效果.下面通过例题的形式,介绍此类不等式证明的几种策略.1利用基本不等式放缩  相似文献   

3.
有关数列不等式的证明既是高考的热点题型,也是难点,而用放缩法证明此类问题是常用方法,但是,因题型千姿百态,放缩的策略与放缩的度很难把握好,今通过例题介绍六种常见的放缩技巧。  相似文献   

4.
放缩法证明数列不等式是高考数学命题的热点和难点,通常作为试卷的压轴题,由于其灵活多变,让许多学生觉得没有规律,无从着手.为帮助更多的学生突破这个难点,我们可以在思维策略上加以点拨,提升其能力.本文谈谈笔者关于这一问题的一点浅见.  相似文献   

5.
文[1]在“目标分析策略”中提出:通过目标值或目标式的分析常常能得到放缩的路径,又在相应例题中提到利用等比数列放缩,阅后很受启发.  相似文献   

6.
近几年各地高考试题中,压轴题多以数列不等式为主,而处理这类不等式的最重要方法(也是主要方法)为放缩法.而放缩法往往有变形灵活,技巧性强,难度大等特点.放缩时若不按照一定目标去"有的放矢",则往往是"白算半天"仍不能求解.针对这一现象,本文介绍几种常见"放缩目标",在解证这类题时,有目的的"奔向"这些"目标",使得问题快速获解.  相似文献   

7.
数列中的不等式证明常用的方法有:公式法,比较法,数学归纳法,放缩法等.适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果,但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象.本文以实例对此类问题进行说明.例1(06年福建卷)已知数列{an}满足a1=1,  相似文献   

8.
放缩法证明不等式在历年高考数学中是永恒的话题,放缩法的考查已经逐渐形成了广东高考理科数学考试的热点,它同时也是难点.放缩法它着重考查学生的观察联想能力,式子变形能力,逻辑思维能力,分析问题和解决问题能力,它对学生的能力要求较高.  相似文献   

9.
数列和不等式是高考的两大热点也是难点,数列是高中数学中一个重要的内容,在高等数学也有很重要的地位,不等式是高中数学培养学生思维能力的一个突出的内容,它可以体现数学思维中的很多方法,当两者结合在一起的时候,问题会变得非常的灵活.  相似文献   

10.
<正>放缩法证明数列不等式能迅速化繁为简,达到事半功倍的效果.其中有两种常见的基本题型,本文着重探讨这两种题型的解题策略,以抛砖引玉,供大家参考.例1已知数列{an}的前n项和为Sn,且  相似文献   

11.
<正>数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点.这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常要用到放缩法,而求解途径一般有两条,一是先求和再放缩,二是先放缩再求和.  相似文献   

12.
在高中数学试题中,常常遇到有关数列不等式的证明,因这类题目涉及知识点多,综合性强,具有良好的区分度,可以有效地考查学生分析问题、解决问题的能力,倍受命题者青睐.而对学生而言,遇到这类问题时往往不知所措,不能联想到运用我们所学的不等式知识解决,造成思维受阻.  相似文献   

13.
放缩法证明数列不等式是高考数学的难点.由于其灵活多变,让许多学生觉得没有规律、无从着手.为突破这个难点,我们可以在思维策略上加以点拨,提升其能力.要能明确放缩目标,放缩成"等比型"与"裂项相消型",放缩法的难点在于减小放缩的误差,可以采用延后放缩,但如果前面留下的项过多,计算量就会大.缩小误差的另一种方法是构造变量,目标驱动,引入参数,用待定系数处理.有些"数列型不等式"需通过对目标进行分析,采用构造函数、比较法等方法处理,在思维上降低了难度.这些都是放缩法处理"数列型不等式"常见策略.  相似文献   

14.
寿鲜春 《中学教研》2009,(10):17-19
近几年,浙江省数学高考的压轴题都是与数列有关的不等式证明,需要一定的技巧对不等式进行合理的放缩.由于教材中涉及这方面的问题并不多,虽然放缩法的本质是基于最初等的四则运算,但对大部分学生甚至教师来说,在面对这类考题时,往往显得无措.本文以数列求和不等式的证明为例,试图对此作些探究.  相似文献   

15.
纵观近年来各省的高考压轴题,用放缩法证明不等式似乎是重点考查方向.众所周知,用放缩法证明不等式的理论根据是不等式的传递性,即  相似文献   

16.
数列问题始终是高考的一大亮点,在高考中可谓常考常新,尤其是近些年来数列与不等式的融合更成为高考命题者的新宠,而其中对放缩法的把握需要学生有较强的分析和判断能力,因而倍受命题者的青睐,下面举例对放缩的技巧加以总结,供参考。  相似文献   

17.
近日,笔者在网上(http://www.jyeoo.com)上看到一道数列不等式综合题:  相似文献   

18.
数列型不等式的证明,能全面而综合地考查学生的数学能力,是各级各类数学竞赛命题的极好素材.本文通过举例说明放缩法在证明数列型不等式中的应用.  相似文献   

19.
放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴角色.由于放缩法灵活多变,技巧性要求较高,所谓“放大一点点则太大,缩小一点点则太小”,这就让许多学生很茫然,找不到头绪,摸不着规律,觉得高不可攀!如何把握放、缩的“度”,使得放、缩“恰到好处”,帮助学生突破这个难点,一直是广大数学教师孜孜以求的研究课题.其实,  相似文献   

20.
放缩法是证明不等式的基本方法,使用时要特别小心,否则容易出错.1要敢于放(或缩),但要有一个度例1求证:19 215 419 … (2n1 1)2<41(n∈N*).解析左式的规律一目了然,因此要对常数41产生联想,要证左式<41,必须对左式放大,也就是分母要缩小.左式=132 512 712 … (2n1 1)2<1·13 3·15 5·17 … (2n-1)1(2n 1)=21[(1-31) (31-15) … (2n1-1-2n1 1)]=21(1-2n1 1).这个结果没有达到目的,放得太大了.考虑到1(2n 1)(2n 1)<2n(21n 2),这样一放,问题就解决了.左式=3·13 5·15 7·17 … (2n 1)1(2n 1)<2·14 4·16 6·18 … 2n(21n 2)=41[1·12 2·13…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号