首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正余弦函数的有界性是指当 x∈ R时 ,有 |sinx|≤ 1 ,|cosx|≤ 1 .在解一类与正、余弦函数有关的题目中 ,其能注意到其有界这一性质 ,可使问题得以顺利解决 .下面通过一些例子说明这一性质的应用 .  1 求函数的值域或最大、最小值例 1 .求函数 y =( 2 cosx -1 ) / ( cosx 2 )的最大值及最小值 .解 :由 y =( 2 cosx -1 ) / ( cosx 2 )得 cosx =( 1 2 y) / ( 2 -y) .因为 |cosx|≤ 1 ,故 |( 1 2 y) / ( 2 -y) |≤ 1 .又因 3y2 8y -3≤ 0 ,则 -3≤ y≤ 1 / 3.从而函数的最大值为 1 / 3,最小值为 -3.例 2 .求函数 y =( 3 2 cosx sinx)…  相似文献   

2.
本刊1985年第1期《论函数y=(ax~2 bx c)/(mx~2 nx l)(m≠0)值域的求法》中的方法可以推广,今用该法求函数y=(a_1f~2(x) b_1f(x) c_1)/(f_2f~2(x) b_2f(x)) c_2)的值域。一、如果f(x)的函数值可取一切实数。令u=f(x),转化为该文讨论的函数。 [例1] 求函数y=(sin~2x-2sinxcosx 3cos~2x)/(sin~2x 2sinxcosx-3cos~2x)的值域解:1°当cosx=0时,y=1。 2°当cosx≠0时,该函数可化为 y=(tg~2x-2tgx 3)/(tg~2x 2tgx-3) 因为tgx可取一切实数值,且该函数的分子分母无公因式,于是 (1-y)tg~2x-2(1 y)tgx 3(1 y)=0 则Δ=[-2(1 y)]~2-4×3(1 y)(1-y)≥0 2y~2 y-1≥0  相似文献   

3.
研究函数,常要求函数值域。本文介绍一些无理函数值域求法。 1.y=(ax b)~(1/2)(a≠0)型分析 这种类型的无理函数是最基本的。从观察不难看出值域为{y|y≥0且y∈R}. 2.y=px q±(ax b)~(1/2)型 例1 求y=x 4 (2x 4)~(1/2)的值域。 解令t=(2x 4)~(1/2)(t≥0)则x=(t~2-4)/2(t≥0). ∴原函数为y=(t~2-4)/(2) 4 t=((t 1)~(2) 3)/2 (t≥0), ∴y≥2,原函数值域为{y|y≥2且y∈R}.  相似文献   

4.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

5.
我们知道,在直角坐标系中,设点P_1(x_1,y_1)、P_2(x_2,y_2),若点P(x,y)为有向线段P_1P_2的内(外)分点,则点P分P_1P_2所成的比λ为 λ=(P_1P)/(PP_2)=(x-x_1)/(x_2-x)(=(y-y_1)/(y_2-y)>0(<0)。 (*) 特别地,当线段P_1P_2落在x轴上时,纵坐标为0,情形就更加明了(以下讨论仅在x轴上进行,且不妨约定x_10(λ<0),则P为P_1P_2的内(外)分点,亦即P点介于P_1P_2之间(之外),这时有x_1相似文献   

6.
线段的定比分点坐标公式x=(x_1 λx_2)/(1 λ),y:(y_1 λy_2)/(1 λ),λ=(x-x_1)/(x_2-x)反映了线段的起点P(x_1,y_1)、终点P_2(x_2,y_2)、分点P(x,y)与定  相似文献   

7.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

8.
求空间点P_0(x_0,y_0,z_0)到直线a=(x-x_1)/1=(y-y_1)/m=(z-z_1)/n(这里P_1(x_1,y_1,z_1)为直线a上的点,V={1,m,n}为直线a的方向矢量)的距离d,通常直接用距离公式d=|V×P_1P_0|/|V|。本文主要介绍异于用距离公式的几种方法。 设P_0(2,3,1)为直线a外的一点,直线a的方程为:(x 1)/2=y/(-1)=(z-2)/3 方法1 利用两点间的距离公式,只要求出过P_0点且与a垂直的平面与直线a的交点坐标即可。  相似文献   

9.
我们知道,若P_1(x_1,y_1),P_2(x_2,y_2),P(x,y),且P分P_1P_2的比为λ(λ=-1),见y=y_1 λy_2/1 λ或λ=y-y_1/y_2-y。由公式易得: 1°.λ>0(?)y介于y_1、y_2之间。  相似文献   

10.
某些类似于直线形式或定比分点坐标公式形式的问题上 ,也能巧妙地利用定比分点坐标公式去解决 ,从而获得一种全新的解题理念 .1.用在一些函数值域和不等式的解答问题上【例 1】 求函数y=1+cosx3-2cosx的最值 .解 :类比x=x1+λx21+λ则y=13+ ( -23cosx) ( -12 )1+ ( -23cosx),令“直线”上三点A( 13,0 )、B( -12 ,0 )、C(y ,0 ) ,则λ =-23cosx ,知 :-23≤λ≤23,当λ =-23时 ,y =13+ ( -23) ( -12 )1+ ( -23)=2 ;当λ =23时 ,y =13+ 23( -12 )1+ 23=0 ,所以ymax =2 ,ymin =0【例 2】 求函数y=2x21+x2 的值域解 :y =2x21 +x2 =0 +x2 · 2…  相似文献   

11.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

12.
文献[1]在对一道分式函数值域的错解进行纠错时,不慎又给出了一个错误答案.摘录如下:问题求函数 y=(1-x~2)~(1/2)/(2 x)的值域.错解原式变形为(x 2)y=(1-x~2)~(1/2),两边平方整理得(y~2 1)x~2 4y~2x 4y~2-1=0,因为 y~2 1>0且 x 是实数,所以△=16y~4-4(y~2 1)(4y~2-1)≥0,从而|y|≤1/3~(1/2),即原函数的值域是[-(3~(1/2)),3~(1/2)].剖析原函数在化为整式及去根号时,扩大了定义域,从而扩大了函数的值域.解因为函数的定义域为-1≤x≤1,所以 x 2>0,可得0≤((1-x~2)~(1/2))/(x 2)≤1/2.当 x=±1时,左端等号成立;当 x=0时,右端等号成立,所以函数的值域为[0,1/2].在高中数学教学中,常遇到一些分式函数的值域求解问题.学生的解题错误率较高,有的甚至感觉  相似文献   

13.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

14.
解析几何中的中点坐标公式大家是十分熟悉的:由这个公式易看出一个事实,即x_1,x,x_2;y_1,y,y_2两组数都是等差数列,不妨设其公差分别为d_1,d_2。本文的目的在于探讨这两个公差之比的几何意义及其应用。设P_1(x_1,y_1),P_2(x_2,y_2)分别是直线l与二次曲线C的两个交点,P(x,y)为P_1P_2的中点,则d_2/d_1就是弦P_1P_2的斜率k。这一几何意义是不难证明的事实上,d_2/d_1=(y-y_1)/(x-x_1)=k。  相似文献   

15.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

16.
1 把值域当有界例 1 求证 :y=x2 - x 1x2 x 1的值域为[1/3,3].错证 因 (x2 - x 1x2 x 1- 13) (x2 - x 1x2 x 1-3) =(2 x2 - 4 x 2 ) (- 2 x2 - 4 x- 2 )(x2 x 1) 2 =-4 ( x-1) 2 ( x 1) 2( x2 x 1) 2 ≤ 0 ,所以 13≤x2 - x 1x2 x 1≤3(x∈R) ,即 y=x2 - x 1x2 x 1的值域为 [13,3].分析 上面证明显然是把值域当成了 y值有界 ,而并未证明 [1/3,3]是 y的值域 .因为作为值域 ,y值必须具备下面 2点 :(1) y∈[1/3,3];(2 ) y值充满区间 [1/3,3].下面证明 y=x2 - x 1x2 x 1函数值充满 [13,3]: y0 ∈ [13,3],将函数式变形 ,(y0 - 1) x2…  相似文献   

17.
方差用于衡量一个样本数据波动的大小,计公式为:S~2=1/n[(x_1-(?))~2 (x_2-(?))~2 … (x_n-(?))~2]=1/n[x_1~2 x_2~2 … x_n~2-1/n(x_1 x_2 … x_n)~2]。显然S~2≥0,仅当S~2=0时,x_1=x_2=…=x_n。例1已知实数x,y满足求xy的最大值。解视x,y为一组数据,其方差为S~2=1/2[x~2 y~2-1/2(x y)~2]=-1/4a~2 1/2a 3/4≥0。即(a 1)(a-3)≤0,所以或解得-1≤a≤3.所以xy=(x y)~2-(x~2 y~2)/2=5/2(a-2/5)~2-9/10。当a=3时,xy有最大值,为16。例2已知a,b,c三数满足方程组  相似文献   

18.
我们熟知:当已知线段两端点为P_1(x_1,y_1)、P_2(x_2,y_2)、点P(x,y)分所成的比为λ时,点P的坐标是: x=(x_1+λx_2)/1+λ,y=(y_1+λy_2)/1+λ(λ≠-1) 如果我们将上述线段更换为圆柱、棱柱、圆台、棱台、圆锥、棱锥,则可得到一组与线段定比分点坐标公式形式相似的结论: 若换线段为棱台有:结沦一:设棱台上、下底的面积分别为S′、S,平行于两底的截面积为S_0,若截面分高的上、下两部分之比为λ,则:  相似文献   

19.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

20.
《高中生》2007,(24)
根据三角函数的图像分析其性质1.三角函数的定义域(1)函数y=tanx的定义域是{x|x≠kπ π/2,k∈Z}或(kπ-π/2,kπ π/2)(k∈Z).上述两种定义域的表示法都需要掌握,即角x不能取终边在y轴上的角.(2)函数y=sinx和y=cosx的定义域都是R.2.三角函数的值域(1)函数y=sinx和y=cosx的值域均为[-1,1],函数y=tanx的值域为R.(2)复合三角函数的值域问题比较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换然后再来求值域.一些常用的三角函数的值域要熟记.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号