首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
向量内积(数量积)的定义及其坐标运算(a.b=|a||b|cosθ=x1x2+y1y2+z1z2)融向量、几何、代数知识于一体,成为许多数学知识的交汇点,是数形结合、转化的最佳纽带和桥梁,是用向量法计算立体几何中各种距离和夹角的最有力的基本工具,教学一线的教师教学中应给予足够的重视.  相似文献   

2.
<正>一、知识梳理1.平面向量的数量积。(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,规定零向量与任一向量的数量积为0,即0·a=0。(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。2.平面向量数量积的运算律。(1)a·b=b·a(交换律)。  相似文献   

3.
平面向量的数量积是一个重点、难点,学生对平面向量的数量积及其性质的应用,感到困难、或无从下手,甚至回避.本文从以下几个方面讲解它的性质及应用. 两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),即a·b=|a||b|cosθ  相似文献   

4.
在不等式的证明中,有一类不等式可以通过构造向量,利用两向量数量积的性质进行证明.两向量数量积中蕴含着几个重要的不等关系:m·n= |m| |n|cosθ≤|m| |n|(θ为m与n的夹角),|m·n|=|m| |n| |cosθ|≤|m| |n|, |m·n|2≤|m|2 |n|2.  相似文献   

5.
构造向量求函数最值   总被引:2,自引:2,他引:2  
函数最值问题 ,屡屡出现在国内外各类竞赛试题中 .适当构造向量 ,可使一类函数最值问题的思路清晰 ,解题方法简捷巧妙 ,并富于规律性、趣味性 .定理 m,n为两个向量 ,则| m| 2 ≥ ( m· n) 2| n| 2 .证明 设两向量的夹角为θ,则| m| 2 =| m| 2· | n| 2| n| 2 ≥ | m| 2 | n| 2 cos2θ| n| 2 =( m· n) 2| n| 2 ,证毕 .1 构造向量 ,求整函数最值例 1 求实数 x,y的值 ,使得 ( y- 1 ) 2 +( x+ y- 3) 2 + ( 2 x+ y- 6 ) 2 达到最小值 .( 2 0 0 1年全国初中数学联赛试题 )解 构造 m=( y- 1 ,x+ y- 3,2 x+ y-6 ) ,n=( - 1 ,2 ,- 1 ) ,依定理 …  相似文献   

6.
题已知:ai,bi∈R+,(i=1,2,3,…),求证Σaibi/aibi≤Σai·Σbi/Σ(ai+bi). 证法1 柯西不等式因为∑aibi/ai+bi=∑(ai-ai2/ai+bi) =∑ai-∑ai2/ai+bi,根据柯西不等式∑Mi2/ni≥(Σmi)2/Σni得  相似文献   

7.
在公式(a+b)^2=a^2+b^2+2a·b=|a|^2+|b|^2+2|a|·|b|cosθ(其中θ为向量a,b的夹角)中,既有向量的加法运算,又含有向量的内积;既有向量的模,又隐含向量的夹角在内.应用该公式解决已知几个向量的和,求向量的内积、夹角或模的问题时,会带来方便.  相似文献   

8.
本文介绍椭圆和双曲线切线的一个有趣性质 ,并说明其应用 .定理 经过椭圆 b2 x2 a2 y2 =a2 b2 (a>b>0 )或双曲线 b2 x2 - a2 y2 =a2 b2 (a>0 ,b>0 )的长轴或实轴两端点 A1 和 A2 的切线 ,与椭圆或双曲线上任一点的切线相交于 P1 和P2 ,则 |P1 A1 |· |P2 A2 |=b2 .证明 椭圆上任一点 P(acosθ,bsinθ)处的切线方程为 b2 ·acosθ· x a2 · bsinθ·y=a2 b2 即bcosθ·x asinθ·y- ab=0 .1又知点 A1 (- a,0 )和 A2 (a,0 )处的切线方程分别为 x=- a和 x=a,将它们分别与1联立解得 |P1 A1 |=|y P1|=b|1 cosθsinθ |,|P2 A2 |=|y P…  相似文献   

9.
利用向量的内积证明关于二面角的公式cosθ=cosαcosβ+sinαsinβcosφ,进而利用该公式给出二面角的一个简便求法.  相似文献   

10.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2=a2b2(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|·|PF2|=2a (1) 在△PF1F2中,由余弦定理有|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=4c2 (2) (1)2-(2)化简得  相似文献   

11.
在实施 (1 998- 1 999学年度 )两省一市高一课改试验《数学》的教学过程中 ,发现有几道习题的表述不太严谨 ,或解法有漏洞 .现提出如下质疑 ,并与同行商榷 .一、已知 a b= c, a- b= d,求证 :| a|=| b| c⊥ d (《数学》第一册 (下 )第1 73页复习参考题 B组第 4题 ) :答案提示 : c⊥ d ( a b)· ( a- b) =0 a2 - b2 =0 a2 = b2 | a|=| b|(人教社版《教师教学用书》)质疑 :这道题的本意是考查向量的内积、垂直充要条件、向量相等等知识 .本是一道很有价值的习题 .然而 ,美中不足是题意中忽略了 a= b或 a=- b,两种特殊情况 .事…  相似文献   

12.
向量a与b之间的夹角定义为分别等于a和b并且具有公共始点的两个向量之间的夹角(Fig.1).向量a乘以向量b的数量积定义为ab,它等于这两个向量的绝对值与它们夹角的余弦的乘积,即ab=|a||b|cosθ.数量积具有如下可由定义直接推出的性质:(1)ab=ba;(2)a~2=aa=|a|~2;(3)(λa)b=λ(ab);  相似文献   

13.
人教版第一册 (下 )第 15 1页第 6题 :已知向量OP1,OP2 ,OP3满足条件OP1+OP2 +OP3=0 ,|OP1| =|OP2 | =|OP3| =1,求证 :△P1P2 P3是正三角形 .教参提供的解答如下 :由OP1+OP2 +OP3=0得OP1+OP2 =-OP3,∴ |OP1+OP2 | =| -OP3| =|OP3| ,即 (OP1+OP2 ) 2 =|OP3| ,OP21+OP22 + 2OP1·OP2 =OP23.由 |OP1| =|OP2 | =|OP3| =1得OP1·OP2 =- 12 .同理可得 OP2 ·OP3=OP1·OP3=- 12 .由平面几何知识得△P1P2 P3为正三角形 .这种方法是利用向量的数量积与模的性质 a2 =| a| 2 证明 .分析 观察条件中两个等式 ,联系…  相似文献   

14.
设m=(x1,y,),n=(x2,y2),θ为向量m与n的夹角.平面向量数量积的定义:几何表示为m·n=|m||n|sinθ,坐标表示为m·n=x1x2 y1y2.于是有X1X2 y1y2=|m||n|  相似文献   

15.
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:a·b=|a|·|b|cosθ(其中θ为向量a与b的夹角),则|a·b|=||a|·|b|cosθ|,又-1≤cosθ≤1,则易得到以下推论:(1)a·b≤|a|·|b|;(2)|a·b|≤|a|·|b|;(3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|;⑷当a与b共线时,|a·b|=|a|·|b|.下面例析以上推论在解不等式问题中的应用.一、证明不等式例1已知a、b∈R ,a b=1,求证:2a 1 2b 1≤22.证明:设m=(1,1),n=(2a 1,2b 1),则m·n=2a 1 2b 1,|m|=2,|n|=2a 1 2b 1=2.由性质m·n≤|m|·|n|,得2a 1 2b 1≤22.例2已知x y z=1,求…  相似文献   

16.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

17.
1987年上海市中学生数学竞赛中有这样一道试题:[1] 正七边形A_1A_2A_3A_4A_5A_6A_7,内接于单位圆⊙O中,P在OA_1的延长线上,且|OP|=2,则|PA_1|·|PA_2|…|PA_7|等于多少? 下面我们把这道富于思考性的试题推广成: 定理设正n边形A_1A_2A_3…A_n内接于圆x~2+y~2=R~2,P(rcosθ,rsinθ)为平面上任意一点,则|PA_2|·|PA_2|·…·|PA_n|=(r~(2n)-2r~nR~ncosnθ+R~(2n))~(1/2)。  相似文献   

18.
正1数量积的第二定义及推论1.1平面向量数量积的第二定义:我们知道现行普通高中课程标准实验教科书《数学》(必修4)上,对平面向量数量积(内积)是这样定义的:对于非零向量a,b,θ为向量a,b的夹角,则a·b=|a||b|cosθ,规定零向量与任一向量的数量积等于零.另外我们  相似文献   

19.
公式 若正三棱锥的侧棱长为l,侧面顶角为θ,则高h =33l 1 2cosθ ( 0 <θ<2π3)。证 如图 ,已知在正三棱锥P -ABC中 ,PO⊥平面ABC ,用向量法证明如下 :∵PO =PA AO =PB BO=PC CO ,∴ 3PO =(PA PB PC) (AO BO CO)。又因点O是正△ABC的中心 ,易证AO BO CO =O ,∴PO =(PA PB PC) / 3。∴ |PO|2 =( |PA|2 |PB|2 |PC| 2 |PA|·|PB|cosθ 2 |PA||PC|cosθ 2 |PB||PC|cosθ) / 9=(l2 l2 l2 2l2 cosθ 2l2 cosθ 2l2 …  相似文献   

20.
众所周知,对于两个非零向量的数量积有如下定义:a·b=|a|·|b|cosθ,其中θ=为两向量的夹角.这使得我们在求两个非零向量的数量积时,既要考虑它们的模又要顾及到它们的夹角.而在一般的几何(非坐标运算)问题中,一般都会优先给出有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号