共查询到20条相似文献,搜索用时 15 毫秒
1.
陈斌 《河北理科教学研究》2006,(3):12-13
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,也是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时 相似文献
2.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径. 相似文献
3.
正不等式证明是高中数学的重点难点之一.不等式的种类繁多,证明的方法也难易悬殊,使用的技巧各异,尽管教材中对不等式的证明给出了系统的总结,但是有很多不等式,我们还是较难快速简洁地证明它.特别是有些不等式,如果用常用的初等方法去证明,我们会感到无从下手.这时如果我们如果将它作个恒等变形,使它转化为我们较熟悉的函数不等式,再借助导数,利用函数的相关性质来证明,往往会事半功倍.一、利用函数单调性证明不等式 相似文献
4.
5.
导数限定法常用来求解多元函数最值,证明不等式.其步骤是:
(1)局部限定;
(2)求导调整;
(3)再限定调整,直至问题解决.[第一段] 相似文献
6.
7.
9.
叶道义 《安徽技术师范学院学报》2003,17(4):338-340
在进行导数的应用的教学中,适当介绍应用有关知识证明不等式,加深学生对导数知识的理解,培养学生分析问题和解决问题的能力。本文从三个方面进行了介绍,供参考。 相似文献
10.
11.
拿到2008年3月号《语数外学习·高考数学》一书后,我满怀热情地将此书读完,收获颇多,感觉此书真是太好了。特别是对余树林老师《例说借助导数证明函数不等式》一文感受很深,里面介绍导数的方法很独到,也很全面。在高一、高二学习中,我就已经知道了函数、方程(特别是二次函数,二次方程)、不等式三者之间的紧密联系。 相似文献
12.
导数知识是高等数学中极其重要的部分,它的内容、思想和应用贯穿于整个高等数学的教学之中.利用导数证明不等式是一种行之有效的好方法,它能使不等式的证明化难为易,迎刃而解.在不等式证明的种种方法中,它占有重要的一席之地.本文将从利用函数的单调性,利用函数的最值(或极值), 相似文献
13.
14.
利用导数证明不等式,是近年高考试题中的热点与难点.其证明的总体思路:将所证的不等式,通过构造函数的形式,利用导数判定原函数的单调性,找出最值(值域)使之获证.基于此,如何合理地构造函数,成为我们能否有效解决问题的核心.本文试就一些常见的构造方法作出例析如下. 相似文献
15.
16.
彭彬 《内江师范学院学报》2008,(Z2)
导数是研究函数性质的一种重要工具。无论是证明不等式,还是解不等式,只要在解题过程中需要用到函数的单调性或最值,都可以用导数来解决。这是转化与化归思想在中学数学中的重要体现。 相似文献
17.
冯仕虎 《数学学习与研究(教研版)》2008,(11)
在高中数学新课程标准(实验)中,关于导数的教学,有这样的要求:教师应引导学生在解决具体问题的过程中,将研究函数的导数方法与初等方法作比较,让学生体会导数方法在研究函数性质中的一般性和有效性.导数是研究函数性质的一种重要工具.例如:求函数的单调区间、求最大(小)值、求函数的值域,等等.作为 相似文献
18.
19.
导数是高中数学新增内容,是高考的考点之一,其应用广泛,解方程、讨论方程根的情况、解不等式、证明不等式等问题,都可通过研究函数的单调性来解决。下面举例说明导数在解不等式和方程中的应用。 相似文献
20.
杨帆 《中国科教创新导刊》2014,(3):113-113
本文主要以近几年高考试题及变式为例来说明利用导数证明不等式的重要方法.主要介绍了最值法、等价命题转化法、两个函数的最值法、放缩法. 相似文献