首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI.  相似文献   

2.
We demonstrate the generation of water-in-water (w/w) jets and emulsions by combining droplet microfluidics and aqueous two-phase systems (ATPS). The application of ATPS in microfluidics has been hampered by the low interfacial tension between typical aqueous phases. The low tension makes it difficult to form w/w droplets with conventional droplet microfluidic approaches. We show that by mechanically perturbing a stable w/w jet, w/w emulsions can be prepared in a controlled and reproducible fashion. We also characterize the encapsulation ability of w/w emulsions and demonstrate that their encapsulation efficiency can be significantly enhanced by inducing formation of precipitates and gels at the w/w interfaces. Our work suggests a biologically and environmentally friendly platform for droplet microfluidics and establishes the potential of w/w droplet microfluidics for encapsulation-related applications.  相似文献   

3.
This paper studies the Rayleigh-Plateau instability for co-flowing immiscible aqueous polymer solutions in a microfluidic channel. Careful vibration-free experiments with controlled actuation of the flow allowed direct measurement of the growth rate of this instability. Experiments for the well-known aqueous two phase system (ATPS, or aqueous biphasic systems) of dextran and polyethylene glycol solutions exhibited a growth rate of 1 s−1, which was more than an order of magnitude slower than an analogous experiment with two immiscible Newtonian fluids with viscosities and interfacial tension that closely matched the ATPS experiment. Viscoelastic effects and adhesion to the walls were ruled out as explanations for the observed behavior. The results are remarkable because all current theory suggests that such dilute polymer solutions should break up faster, not slower, than the analogous Newtonian case. Microfluidic uses of aqueous two phase systems include separation of labile biomolecules but have hitherto be limited because of the difficulty in making droplets. The results of this work teach how to design devices for biological microfluidic ATPS platforms.  相似文献   

4.
We summarize a recently developed microtechnology for printing biomaterials on biological surfaces. The technique is based on the use of immiscible aqueous solutions of two biopolymers and allows spatially defined placement of cells and biomolecules suspended in the denser aqueous phase on existing cell layers and extracellular matrix hydrogel surfaces maintained in the second phase. Printing takes place due to an extremely small interfacial tension and density difference between the two aqueous phases. The contact-free printing process ensures that both printed cells and the underlying cell monolayer maintain full viability and functionality. The technique accommodates both arbitrarily shaped patterns and microarrays of cells and bioreagents. The capability to print cells and small molecules on existing cell layers enables unique interrogations of the effects of cell-cell and cell-material interaction on cell fate and function. Furthermore, the very gentle conditions and the ability to directly pattern nongel embedded cells over cells make this technology appealing to tissue engineering applications where patterned multicellar organization with minimal scaffolding materials is needed, such as in dense tissues of the skeletal muscle and liver.  相似文献   

5.
In this paper, we demonstrate biphasic microfluidic droplets with broadly tunable internal structures, from simple near-equilibrium drop-in-drop morphologies to complex yet uniform non-equilibrium steady-state structures. The droplets contain an aqueous mixture of poly(ethylene glycol) (PEG) and dextran and are dispensed into an immiscible oil in a microfluidic T-junction device. Above a certain well-defined threshold droplet speed, the inner dextran-rich phase is "stirred" within the outer PEG-rich phase. The stirred polymer mixture is observed to exhibit a near continuum of speed and composition-dependent phase morphologies. There is increasing interest in the use of such aqueous two-phase systems in microfluidic devices for biomolecular applications in a variety of contexts. Our work presents a method to go beyond equilibrium phase morphologies in generating microfluidic "multiple" emulsions and at the same time raises the possibility of biochemical experimentation in benign yet complex biomimetic milieus.  相似文献   

6.
Chang YW  He P  Marquez SM  Cheng Z 《Biomicrofluidics》2012,6(2):24118-241189
This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures.  相似文献   

7.
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.  相似文献   

8.
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes.  相似文献   

9.
We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces—for example, to form spherical droplets that encapsulate spherical particles—in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics.  相似文献   

10.
In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future.  相似文献   

11.
Iliescu C  Taylor H  Avram M  Miao J  Franssila S 《Biomicrofluidics》2012,6(1):16505-1650516
This paper describes the main protocols that are used for fabricating microfluidic devices from glass and silicon. Methods for micropatterning glass and silicon are surveyed, and their limitations are discussed. Bonding methods that can be used for joining these materials are summarized and key process parameters are indicated. The paper also outlines techniques for forming electrical connections between microfluidic devices and external circuits. A framework is proposed for the synthesis of a complete glass/silicon device fabrication flow.  相似文献   

12.
13.
We present a novel use for channel structures in microfluidic devices, whereby two two-phase emulsions, one created on-chip, the other off-chip, are rapidly mixed with each other in order to allow for the coalescence of one emulsion with the other. This approach has been motivated by the difficulty in introducing aqueous cross linking agents into droplets by utilising conventional approaches. These conventional approaches include continuous introduction of the different aqueous reagents before droplet formation or alternatively formation of individual droplets of each reagent and subsequent droplet merging later in the microfluidic device. We show that our approach can decrease the mixing time for these fluidic systems by a factor greater than 10 times when compared to a standard microfluidic channel without structures, thereby also allowing for additional reaction time within the microfluidic device. This method shows an application for microfluidic channel structures not before demonstrated, also demonstrating an alternative method for introducing reagents such as cross linkers which link polymer chains to form particles, and provides an example where enzymes are immobilized in monodisperse particles.  相似文献   

14.
第一届中美化学工程学术研讨会于2005年8月9—12日在北京召开,研讨会的宗旨是为中美两国化学工程学者提供一个交流平台,以促进其长期和高层次合作。来自中美两国20余所大学和研究单位的30名学者出席会议并就如下5个专题进行了详细的交流与讨论:(1) 探索复杂结构的方法;(2) 界面上的微尺度过程和传递;(3) 复杂结构的制备;(4) 大分子和生物分子过程;(5) 可持续发展的化学工程。此外,会议还就21世纪化学工程科学研究和工程教育进行了交流。从此次研讨会中可以看出:复杂(分子、界面)结构的形成、调控与应用及相关的研究正在成为化学工程领域的一个新主题;分子模拟成为复杂结构研究的重要基本工具。在美国,正在发展中的化学与生物分子工程课程体系正在被越来越多的大学所采用,以培养研究、应用和开发复杂结构化学品的新一代化学工程师与科学家。  相似文献   

15.
Spherical and non-spherical wax microparticles are generated by employing a facile two-step droplet microfluidic process which consists of the formation of molten wax microdroplets in a flow-focusing microchannel and their subsequent off-chip crystallization and deformation via microdroplet impingement on an immiscible liquid interface. Key parameters on the formation of molten wax microdroplets in a microfluidic channel are the viscosity of the molten wax and the interfacial tension between the dispersed and continuous fluids. A cursory phase diagram of wax morphology transition is depicted depending on the Capillary number and the Stefan number during the impact process. A combination of numerical simulation and analytical modeling is carried out to understand the physics underlying the deformation and crystallization process of the molten wax. The deformation of wax microdroplets is dominated by the viscous and thermal effects rather than the gravitational and buoyancy effects. Non-isothermal crystallization kinetics of the wax illustrates the time dependent thermal effects on the droplet deformation and crystallization. The work presented here will benefit those interested in the design and production criteria of soft non-spherical particles (i.e., alginate gels, wax, and polymer particles) with the aid of time and temperature mediated solidification and off-chip crosslinking.  相似文献   

16.
Chen A  Pan T 《Biomicrofluidics》2011,5(4):46505-465059
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego® building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.  相似文献   

17.
In this paper, we demonstrate for the first time the technique to using microfluidics to fabricate tissue engineering scaffolds with uniform pore sizes. We investigate both the bubble generation of the microfluidic device and the application of foam as a tissue engineering scaffold. Our microfluidic device consists of two concentric tapered channels, which are made by micropipettes. Nitrogen gas and aqueous alginate solution with Pluronic® F127 surfactant are pumped through the inner and the outer channels, respectively. We observe rich dynamic patterns of bubbles encapsulated in the liquid droplets. The size of the bubble depends linearly on the gas pressure and inversely on the liquid flow rate. In addition, monodisperse bubbles self-assemble into crystalline structures. The liquid crystalline foams are further processed into open-cell solid foams. The novel foam gel was used as a scaffold to culture chondrocytes.  相似文献   

18.
Droplet-based microfluidic technology has enabled the production of emulsions with high monodispersity in sizes ranging from a few to hundreds of micrometers. Taking advantage of this technology, attempts to generate monodisperse emulsion drops with high drug loading capacity, ordered interfacial structure, and multi-functionality have been made in the cosmetics industry. In this article, we introduce the practicality of the droplet-based microfluidic approach to the cosmetic industry in terms of innovation in productivity and marketability. Furthermore, we summarize some recent advances in the production of emulsion drops with enhanced mechanical interfacial stability. Finally, we discuss the future prospects of microfluidic technology in accordance with consumers'' needs and industrial attributes.  相似文献   

19.
超疏水性纳米界面材料的制备与研究   总被引:8,自引:0,他引:8  
制备并研究了几种超疏水性纳米界面材料,具体包括(1)以多孔氧化铝为模板,通过一种新的模板挤压法制备了聚丙烯腈纳米纤维,该纤维表面在没有任何低表面能物质修饰时即具有超疏水性,与水的接触角可高达173.8°.(2)利用亲水性聚合物聚乙烯醇制备了具有超疏水性的表面,打破了传统上只有利用疏水材料才能得到超疏水性表面的局限性,扩大了制备材料的应用范围.研究表明,这种特殊的现象是由于聚乙烯醇分子在纳米结构表面发生重排,使得疏水基团向外,分子间氢键向内,从而导致整个体系的表面能降低引起的.(3)将聚丙烯腈纳米纤维通过典型的热解过程,得到了具有类石墨结构的纳米结构碳膜,该膜表面在广泛pH值范围内都具有超疏水的特征,在基因传输、无损失液体输送、微流体等方面具有更广阔的应用前景.(4)利用喷涂-干燥技术制备了一种新型的同时具有超疏水及超亲油性的油水分离网膜.研究表明,网膜表面特殊的微米与纳米尺寸相结合的粗糙结构导致这种特殊的性质,该网膜具有很高的油水分离效率,具有极其广阔的应用前景.  相似文献   

20.
This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号