首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the contribution of flexor muscles to the forearm through fatigue; therefore, the differences in forearm mechanisms on the pitching motion in fastball were analysed. Fifteen baseball pitchers were included in this study. Ultrasonographical examination of participants’ ulnar nerve in the cubital tunnel with the elbow extended and at 45°, 90° and 120° of flexion was carried. A three-dimensional motion analysis system with 14 reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the flexor carpi ulnaris, flexor carpi radialis and extensor carpi radialis muscles of the dominant arm. Flexor carpi ulnaris muscle activity showed a significant difference during the acceleration phase, with a peak value during fastball post-fatigue (= 0.02). Significant differences in the distance between ulnar nerve and medial condyle on throwing arm and non-throwing arm were observed as the distance increased with the elbow movement from 0° to 120° of flexion (P = 0.01). The significant increase of the flexor carpi ulnaris muscle activity might be responsible for maintaining the stability of the wrist joint. The increased diameter might compress the ulnar nerve and cause several pathological changes. Therefore, fatigue in baseball pitchers still poses a threat to the ulnar nerve because the flexor carpi ulnaris and flexor carpi radialis all originate from the medial side of the elbow, and the swelling tendons after fatigue might be a key point.  相似文献   

2.
The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, = 0.002) and at ball release (r = 0.536, = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.  相似文献   

3.
Abstract

Leg stiffness is a modifiable mechanical property that may be related to soft tissue injury risk. The purpose of this study was to examine mean leg stiffness and bilateral differences in leg stiffness across an entire professional Australian Football League (AFL) season, and determine whether this parameter was related to the incidence of lower body soft tissue injury. The stiffness of the left and right legs of 39 professional AFL players (age 24.4 ± 4.4 years, body mass 87.4 ± 8.1 kg, stature 1.87 ± 0.07 m) was measured using a unilateral hopping test at least once per month throughout the season. Injury data were obtained directly from the head medical officer at the football club. Mean leg stiffness and bilateral differences in leg stiffness were compared between the injured and non-injured players. There was no difference between the season mean leg stiffness values for the injured (219.3 ± 16.1 N · m?1 · kg?1) and non-injured (217.4 ± 14.9 N · m?1 · kg?1; P = 0.721) groups. The injured group (7.5 ± 3.0%) recorded a significantly higher season mean bilateral difference in leg stiffness than the non-injured group (5.5 ± 1.3%; P = 0.05). A relatively high bilateral difference in leg stiffness appears to be related to the incidence of soft tissue injury in Australian football players. This information is of particular importance to medical and conditioning staff across a variety of sports.  相似文献   

4.
This study compared the athletic movement skill between elite Under-18 (U18) Australian football (AF) and senior Australian Football League (AFL) players. The U18 sample (n = 13; 17.7 ± 0.6 years) were representatives of an elite talent development programme. The AFL players were classified accordingly; Group 1 (1–4 AFL seasons; n = 20; 21.2 ± 1.9 years) and Group 2 (>5 AFL seasons; n = 14; 26.3 ± 2.6 years). Participants performed an athletic movement skill assessment, inclusive of five foundational movements. Each movement was scored across three assessment points using a three-point scale. Total score for each movement (maximum of nine) and overall score (maximum of 63) were used as criteria. Multivariate analysis of variance (MANOVA) was used to test the effect of developmental group (three levels) on the criteria. Receiver operating curves were built to examine the discriminant capability of the overall score. A significant effect of developmental group was noted, with the U18 sample having a lower mean total score for four of the five movements. Overall scores of 49/63 and 50/63 discriminated the elite U18 sample from Group 1 and Group 2, respectively. U18 players may have less developed athletic movement skills when compared to their senior AFL counterparts.  相似文献   

5.
Abstract

Though clinical observations and laboratory data provide some support for the neuromuscular imbalance theory of the genesis of exercise-associated muscle cramps, no direct evidence has been published. The purpose of this study was to determine the effect of local muscle fatigue on the threshold frequency of an electrically induced muscle cramp. To determine baseline threshold frequency, a cramp was electrically induced in the flexor hallucis brevis of 16 apparently healthy participants (7 males, 9 females; age 25.1 ± 4.8 years). The testing order of control and fatigue conditions was counterbalanced. In the control condition, participants rested in a supine position for 30 min followed by another cramp induction to determine post-threshold frequency. In the fatigue condition, participants performed five bouts of great toe curls at 60% one-repetition maximum to failure with 1 min rest between bouts followed immediately by a post-threshold frequency measurement. Repeated-measures analysis of variance and simple main effects testing showed post-fatigue threshold frequency (32.9 ± 11.7 Hz) was greater (P < 0.001) than pre-fatigue threshold frequency (20.0 ± 7.7 Hz). An increase in threshold frequency seems to demonstrate a decrease in one's propensity to cramp following the fatigue exercise regimen used. These results contradict the proposed theory that suggests cramp propensity should increase following fatigue. However, differences in laboratory versus clinical fatiguing exercise and contributions from other sources, as well as the notion of a graded response to fatiguing exercise, on exercise-associated muscle cramp and electrically induced muscle cramp should be considered.  相似文献   

6.
This study examined the validity of the Actical accelerometer step count and energy expenditure (EE) functions in healthy young adults. Forty-three participants participated in study 1. Actical step counts were compared to actual steps taken during a 200 m walk around an indoor track at self-selected pace and during treadmill walking at different speeds (0.894, 1.56 and 2.01 m · s–1) for 5 min. The Actical was also compared to three pedometers. For study 2, 15 participants from study 1 walked on a treadmill at their predetermined self-selected pace for 15 min. Actical EE was compared to EE measured by indirect calorimetry. One-way analysis of variance and t-tests were used to examine differences. There were no statistical difference between Actical steps and actual steps in self-selected pace walking and during treadmill walking at moderate and fast speeds. During treadmill walking at slow speed, the Actical step counts significantly under predicted actual steps taken. For study 2, there was no statistical difference between measured EE and Actical-recorded EE. The Actical provides valid estimates of step counts at self-selected pace and walking at constant speeds of 1.56 and 2.01 m · s–1. The Actical underestimates EE of walking at constants speeds ≥1.38 m · s–1.  相似文献   

7.
In this study, we examined whether self-selected overground running speed was consistent (1) with perceived overground speed on the treadmill and (2) among barefoot and three footwear conditions. Participants ran across a 20-m runway 10 times for each overground condition, with running speed calculated from kinematic data. For the treadmill condition, the participants were instructed to run at a speed that felt similar to their overground speed. This treadmill speed was chosen upon perception, with the display covered from the participant's view. Repeated-measures analysis of variance was used to detect differences in speed between overground and treadmill running, and also among barefoot and footwear conditions. Coefficient alpha (α) was calculated to determine repeatability of observations in each overground condition. The speed was higher during overground (3.65 ± 0.40 m/s) than treadmill (2.25 ± 0.75 m/s) running but did not differ among the barefoot and the three footwear conditions. Overall, overground speed was highly repeatable within an individual (α = 0.96–0.98). Researchers might consider using self-selected speed when investigating overground running mechanics with different foot–ground interface conditions. The influence of treadmill on the perception of speed may be related to shear force, running duration, joint load control, and/or other psychological factors.  相似文献   

8.
This study investigated the extent to which position in the Australian Football League (AFL) national draft is associated with individual game performance metrics. Physical/technical skill performance metrics were collated from all participants in the 2014 national under 18 (U18) championships (18 games) drafted into the AFL (n = 65; 17.8 ± 0.5 y); 232 observations. Players were subdivided into draft position (ranked 1–65) and then draft round (1–4). Here, earlier draft selection (i.e., closer to 1) reflects a more desirable player. Microtechnology and a commercial provider facilitated the quantification of individual game performance metrics (= 16). Linear mixed models were fitted to data, modelling the extent to which draft position was associated with these metrics. Draft position in the first/second round was negatively associated with “contested possessions” and “contested marks”, respectively. Physical performance metrics were positively associated with draft position in these rounds. Correlations weakened for the third/fourth rounds. Contested possessions/marks were associated with an earlier draft selection. Physical performance metrics were associated with a later draft selection. Recruiters change the type of U18 player they draft as the selection pool reduces. juniors with contested skill appear prioritised.  相似文献   

9.
ABSTRACT

This study aimed to describe stationary overhead throwing biomechanics in South African cricketers, considering playing level, and relative to baseball. Kinematics and ground reaction forces were collected during throwing trials. Inverse dynamics was used to calculate joint kinetics. Inter-subject variability was calculated using the coefficient of variance. A one-dimensional statistical parametric mapping ANOVA was conducted to assess differences between the kinematic waveforms in elite and amateur cricketers (p < 0.05). Fifteen cricketers (elite = 8; amateur = 7) participated in this study. The basic parameters of a cricketer’s throwing action are described. Substantial inter-subject variability was noted for all variables, except lumbopelvic movement. Cricketers presented with 74.9 ± 27.3° glenohumeral external rotation and 94.8 ± 23.7° elbow flexion, at maximum external rotation (MER). Amateur cricketers displayed decreased elbow flexion range of motion between 2-14% of the throwing cycle (F = 9.365;p = 0.01); greater shoulder (121.0vs85.9 N; F = 0.36,p = 0.021) and elbow compression (105.6vs72.8 N;F = 0.007,p = 0.043), and superior shoulder force (203.1vs115.5 N;F = 2.43,p = 0.022) at MER, when compared with elite cricketers. Cricketers display similarities to baseball pitchers when throwing overhead from a stationary position. The “preparatory arc” utilised is different to the wind-up noted for baseball. The forces exerted on the shoulder and elbow, in amateur cricketers specifically, are substantially greater at MER and may indicate the potential risk for injury.  相似文献   

10.
Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73–0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.  相似文献   

11.
Abstract

The objective of this study was to examine the effects of acute static muscle stretch on hamstring muscle fatigue and perceived exertion between young adult men and women. Twenty volunteers participated in two experimental sessions, in which we assessed maximal-effort isokinetic knee flexor force (90° · s?1) and the number of sub-maximal (50% maximal) knee flexor repetitions to the point of failure. Immediately before the sub-maximal contractions on one randomly selected session, participants received ten 30-s passive knee flexor muscle stretches. Perceived exertion was sampled with a modified Borg category-ratio scale following each sub-maximal repetition. Each participant's perceived exertion response was estimated every 10% across the sub-maximal repetitions, via linear interpolation and power-function modelling. The men generated significantly greater force than the women during both experimental sessions, while muscle stretching had no significant effect on the number of sub-maximal repetitions. When estimated via power-function modelling, perceived exertion increased at a significantly greater rate following muscle stretch. Perceived exertion was significantly greater for the women following muscle stretch than the men. The findings suggest that the elevation in perceived exertion following knee flexor muscle stretching may be greater in women than men, despite no significant alterations in mechanical measures of muscle fatigue.  相似文献   

12.
ABSTRACT

The study aim was to investigate ball movement patterns using network analysis techniques, to compare between successful and unsuccessful outcomes and teams in the Australian Football League (AFL). This analysis focused on possession chains starting from a kick-in (n = 1,720), drawn from all games played in the 2015 AFL Premiership season (18 teams, 206 games). Player interactions were quantified using four network metrics: cluster coefficient, degree centrality, network density, and entropy. Three-way ANOVA with Tukey post hoc and ω2 effect sizes were calculated to assess whether differences existed between kick-in outcomes, ladder brackets, and match outcomes for each network metric. No significant differences were observed between ladder brackets or match outcomes for any network metric. More successful kick-in chains were characterised by lower density (ω2 = 0.26, large effect; F(9, 1678) = 66.6, p < 0.00) and higher entropy (ω2 = 0.17, large effect; F(9, 1678) = 39.6, p < 0.00). This suggests that chains resulting in successful kick-in outcomes exhibited lower interconnectedness, with a high number of players involved, and lower predictability in ball movement patterns. These findings have practical value for coaches and performance analysts and support further applications of network analysis in Australian football.  相似文献   

13.
Analysis of lower limb work-energy patterns in world-class race walkers   总被引:1,自引:1,他引:0  
The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (±6.9) and 40.3 J (±8.3), respectively), with the ankle plantarflexors (16.3 J (±4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (?49.1 J (±8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = ?.689, P = .002). The knee flexors did most negative work (?38.6 J (±5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury.  相似文献   

14.
Groin pain is a common cause of athletic disability and often involves the adductor longus. A common complaint of patients with groin problems is pain while preparing to kick the ball. The purpose of this study was to examine muscle length and activation of the adductor longus while kicking a soccer ball. Three-dimensional joint positions and muscle activation were obtained from 15 National Collegiate Athletic Association (NCAA) Division 1 male soccer players during maximal effort kicks. Musculoskeletal modeling techniques incorporating joint position and muscle attachments were used to estimate adductor longus length from the beginning of the kicking leg's swing phase until ball strike. The maximum rate of stretch of the adductor longus (22.3 ± 5.3 cm/s) and maximum hip extension (23.3 ± 8.8°) occurred near 40% of swing phase. Activation of the adductor longus occurred between 10% and 50% of the swing phase. Adductor longus maximum length occurred at 65% of the swing phase. Maximum hip abduction (25.3 ± 5.4°) occurred at 80% of swing phase. The adductor longus appears to be at risk of strain injury during its transition from hip extension to hip flexion. This knowledge could be applied to muscle injury prevention and rehabilitation programs to aid with treatment of adductor longus related groin pain.  相似文献   

15.
Abstract

The catcher has the most demanding position in the games of baseball and softball with no regulations on how many throws they make during game. It was the purpose of this study to describe the kinematics and kinetics of the throwing motion in catchers when throwing down to second base. It was hypothesised that younger and older catchers would display significantly different throwing kinematics and kinetics. Thirty-eight baseball and softball catchers volunteered to participate. Twenty participants were considered younger (aged 9–14, 10.95 ± 1.76 years, 151.11 ± 15.64 cm, 47.94 ± 18.84 kg) and 18 were deemed the older group (aged 15–23, 18.11 ± 2.61 years, 170.91 ± 8.67 cm, 74.88 ± 10.74 kg). Participants received a pitch and completed five accurate throws to second base in full catching gear. The average ball speed of the older catchers was 21 ± 3.58 meters per second (47 ± 8.02 mph) while the younger catchers averaged 17.2 ± 4.0 meters per second (38.6 ± 8.96 mph). Older catchers had greater shoulder elevation at ball release and significantly greater shoulder external rotation at foot contact and shoulder maximum external rotation than younger catchers. It is clear that chronological age plays a role in the throwing mechanics observed in catchers throwing down to second base, however the effects of these differences are not fully understood (i.e., skeletal maturity, experience, strength).  相似文献   

16.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

17.
This study quantified lower-limb strength decrements and assessed the relationships between strength decrements and performance fatigue during simulated basketball. Ten adolescent, male basketball players completed a circuit-based, basketball simulation. Sprint and jump performance were assessed during each circuit, with knee flexion and extension peak concentric torques measured at baseline, half-time, and full-time. Decrement scores were calculated for all measures. Mean knee flexor strength decrement was significantly (P < 0.05) related to sprint fatigue in the first half (R = 0.65), with dominant knee flexor strength (R = 0.67) and dominant flexor:extensor strength ratio (R = 0.77) decrement significantly (< 0.05) associated with sprint decrement across the entire game. Mean knee extensor strength (R = 0.71), dominant knee flexor strength (R = 0.80), non-dominant knee flexor strength (R = 0.75), mean knee flexor strength (R = 0.81), non-dominant flexor:extensor strength ratio (R = 0.71), and mean flexor:extensor strength ratio (R = 0.70) decrement measures significantly (P < 0.05) influenced jump fatigue during the entire game. Lower-limb strength decrements may exert an important influence on performance fatigue during basketball activity in adolescent, male players. Consequently, training plans should aim to mitigate lower-limb fatigue to optimise sprint and jump performance during game-play.  相似文献   

18.
Abstract

Introduction: In response to fatigue during an exhaustive treadmill run, forefoot runner’s muscles must adapt to maintain their pace. From a neuromuscular control perspective, certain muscles may not be able to sustain the force to meet the run’s demands; thus, there may be alternative muscle coordination in the lower extremity that allows for continued running for an extended period of time. The aim of this study was to quantify the change in muscle coordination during a prolonged run in forefoot runners.

Methods: Thirteen forefoot runners performed exhaustive treadmill runs (mean duration: 15.4?±?2.2?min). The muscle coordination of seven lower extremity muscles was quantified using a high-resolution time–frequency analysis together with a pattern recognition algorithm.

Results: The mean EMG intensity for the lateral and medial gastrocnemius muscles decreased with the run (p?=?0.02; 0.06). The weight factors of the second principal pattern decrease by 128.01% by the end of run (p?=?0.05, Cohen’s d?=?0.42) representing a relatively greater biceps femoris activation in midstance but smaller midstance rectus femoris, vastus medialis, triceps surae, and tibialis anterior activation.

Discussion: These results suggest that forefoot runners cannot sustain plantar flexor activation throughout an exhaustive run and change their muscle coordination strategy as a compensation. Understanding the underlying compensation mechanisms humans use to cope with fatigue will help to inform training modalities to enhance these late stage muscle activation strategies for athletes with the goal of improving performance and reducing injury.  相似文献   

19.
Abstract

This study examined the birth distribution for adolescent (i.e. <20 years) and mature age players (i.e. ≥20 years) selected in the Australian Football League (AFL) National Draft between 2001 and 2012. Birth-date information was accessed for all first time AFL national draftees and players were then classified as either adolescent (N = 736) or mature age (N = 70) draftees. Chi-squared analysis showed a clear bias in the birth distribution of adolescent draftees towards players born in the first part of the classification period for both quartile (P < 0.001) and half-year (P < 0.001) compared to the Australian national population. There was a reverse relative age effect (RAE) for mature age draftees, with a significant bias towards players born in the latter part of the selection period for both quartile (P = 0.047) and half-year (P = 0.028) compared to the Australian national population. The selection bias towards relatively older players in adolescent AFL draftees may be related to advanced physical and psychological maturity, and exposure to higher-level coaching compared to their younger counterparts. The reverse RAE in mature age draftees is a novel finding and supports the need for strategies to encourage continued participation pathways for talented Australian football players born later in the selection year.  相似文献   

20.
Abstract

Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 ± 20 cm H2O and 6.3 ± 1.4 litres · s?1 to 100 ± 22 cm H2O and 4.9 ± 1.5 litres · s?1 respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号