首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.  相似文献   

2.
采用冷压二次烧结法制备出Al2O3/Cu复合材料,Al2O3颗粒的尺寸分别为1.5μm、7μm、10μm,体积含量分别为5%、10%、15%.耐磨性实验结果表明,Al2O3颗粒可以大幅度提高Cu基体材料的抗磨损性能,且Al2O3含量多(10%、15%)的比含量少(5%)的复合材料耐磨性更好;而Al2O3颗粒粒径适中(7μm)的比其它粒径(1.5μm、10μm)的复合材料抗磨损性能更佳.  相似文献   

3.
Using SnxTi1-xO2 as carriers, CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 catalysts with different loading amounts of copper oxide (CuO) were prepared by an impregnation method. The catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 were examined using a microreactor-gas chromatography (GC) NO CO reaction system and the methods of BET (Brun- auer-Emmett-Teller), TG-DTA (themogravimetric and differential thermal analysis), X-ray diffraction (XRD) and H2-temperature programmed reduction (TPR). The results showed that NO conversions of Sn0.9Ti0.1O2 and Sn0.7Ti0.3O2 were 47.2% and 43.6% respectively, which increased to 95.3% and 90.9% at 6 wt% CuO loading. However, further increase in CuO loading caused a decrease in the catalytic activity. The nitrogen adsorption-desorption isotherm and pore-size distribution curve of Sn0.9Ti0.1O2 and Sn0.7Ti0.3O2 represented type IV of the BDDT (Brunauer, Deming, Deming and Teller) system and a typical mesoporous sample. There were two CuO diffraction peaks (2θ 35.5° and 38.7°), and the diffraction peak areas increased with increasing CuO loading. TPR analysis also detected three peaks (α, β and γ) from the CuO-loaded catalysts, suggesting that the α peak was the reduction of the highly dispersed copper oxide, the β peak was the reduction of the isolated copper oxide, and the γ peak was the reduction of crystal phase copper oxide. In addition, a fourth peak (δ) of the catalysts meant that the SnxTi1-xO2 mixed oxides could be reductive.  相似文献   

4.
INTRODUCTIONJone-Doleequation(JonesandDole,1929)isbeingusedextensivelyforstudyingion-solventinteractionsfordilutesolutions(Fahim-ud-Dinetal.,1990).Valuesofion-solventinteractioncoef-ficientdependupontheparticularelectrolyte,concentrationofelectrolyte,temperatureandsol-ventunderconsideration(Afzaletal.,1989).Mohi-ud-DinandIsmail(1983)attemptedtode-scribetheconcentrationdependenceofviscosityintermsofanempiricalisothermalequation,Eq.(1),obtainedfromtheVogel-Tammann-Fulcher(VTF)equation(…  相似文献   

5.
α-diketones and β-diketones react with Grignard reagents in the presence of a catalytic amount of Cp2TiCl2 to yield α-ketols and corresponding ketones respectively. Sulfoxides can be deoxygenated by Cp2TiCl2/Al system. The possible mechanisms are also discussed.  相似文献   

6.
SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. The optimum conditions have also been found, mole ratio of n(La^3+):n(Ti^4+) is 1:34, the soaked consistency of H2SO4 is 0.8 tool/L, the soaked time of HESO4 is 24 h, the calcining temperature is 480 ℃, the calcining time is 3 h. Then it was applied in the catalytic synthesis often important ketals and acetals as catalyst and revealed high catalytic activity. Under these conditions on which the molar ratio of aldehyde/ketone to glycol is l: 1.5, the mass ratio of the catalyst used in the reactants is 0.5%, and the reaction time is 1.0 h, the yields of ketals and acetals can reach 41.4%-95.8%.  相似文献   

7.
Zhang  Yanting  Ran  Lei  Li  Zhuwei  Zhai  Panlong  Zhang  Bo  Fan  Zhaozhong  Wang  Chen  Zhang  Xiaomeng  Hou  Jungang  Sun  Licheng 《天津大学学报(英文版)》2021,27(4):348-357

Solar-driven water splitting is a promising alternative to industrial hydrogen production. This study reports an elaborate design and synthesis of the integration of cadmium sulfide (CdS) quantum dots and cuprous sulfide (Cu2S) nanosheets as three-dimensional (3D) hollow octahedral Cu2S/CdS p–n heterostructured architectures by a versatile template and one-pot sulfidation strategy. 3D hierarchical hollow nanostructures can strengthen multiple reflections of solar light and provide a large specific surface area and abundant reaction sites for photocatalytic water splitting. Owing to the construction of the p–n heterostructure as an ideal catalytic model with highly matched band alignment at Cu2S/CdS interfaces, the emerging internal electric field can facilitate the space separation and transfer of photoexcited charges between CdS and Cu2S and also enhance charge dynamics and prolong charge lifetimes. Notably, the unique hollow Cu2S/CdS architectures deliver a largely enhanced visible-light-driven hydrogen generation rate of 4.76 mmol/(g·h), which is nearly 8.5 and 476 times larger than that of pristine CdS and Cu2S catalysts, respectively. This work not only paves the way for the rational design and fabrication of hollow photocatalysts but also clarifies the crucial role of unique heterostructure in photocatalysis for solar energy conversion.

  相似文献   

8.
1 Introduction Tindioxidefilmshavebeenwidelyusedasconductiveelectrodes,transparentcoatings,andheterojunctionsolarcells.SnO2filmswithdifferentstructurescanbeconstructedbychemicalvapordepositiononsubstratesofdifferenttemperatures.AboafandMarcotte[1]pr…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号