首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents findings from a study conducted in an urban elementary school in the United States with an English language learner (ELL) student and two teachers engaged in collaborative teaching in an inclusion science classroom. This study examines the efficacy of utilising cogenerative dialogues between an ELL student and his science teacher and English as second language teacher to improve instructional practices enacted during coteaching. Drawing from field notes, teacher and student interviews, and video captured during cotaught science lessons and during cogenerative dialogues between the student and his coteachers, we examined the ways in which cogenerative dialogue expands teachers’ agency to adapt curriculum and implement instructional strategies that can better meet the needs of their students. At the same time, we examined the ways in which participation in cogenerative dialogues with his teachers expanded this student’s agency as a science learner and a language learner.  相似文献   

2.
ABSTRACT

This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers’ attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers’ attitudes. Teachers felt less anxious about teaching science and felt less dependent on contextual factors compared to the control group. With regard to attitude towards conducting inquiry, teachers felt less anxious and more able to conduct an inquiry project. There were no effects on other attitude components, such as self-efficacy beliefs or relevance beliefs, or on self-reported science teaching behaviour. These results indicate that practitioner research may have a partially positive effect on teachers’ attitudes, but that it may not be sufficient to fully change primary teachers’ attitudes and their actual science teaching behaviour. In comparison, a previous study showed that attitude-focused professional development in science education has a more profound impact on primary teachers’ attitudes and science teaching behaviour. In our view, future interventions aiming to stimulate science teaching should combine both approaches, an explicit focus on attitude change together with familiarisation with inquiry, in order to improve primary teachers’ attitudes and classroom practices.  相似文献   

3.
This pilot study investigates the impact of a 2-week professional development Summer Institute on PK-3 teachers’ knowledge and practices. This Summer Institute is a component of [program], a large-scale early-childhood science project that aims to transform PK-3 science teaching. The mixed-methods study examined concept maps, lesson plans, and classroom observations to measure possible changes in PK-3 teachers’ science content knowledge and classroom practice from 11 teachers who attended the 2014 Summer Institute. Analysis of the concept maps demonstrated statistically significant growth in teachers’ science content knowledge. Analysis of teachers’ lesson plans demonstrated that the teachers could design high quality science inquiry lessons aligned to the Next Generation Science Standards following the professional development. Finally, examination of teachers’ pre- and post-Summer Institute videotaped inquiry lessons showed evidence that teachers were incorporating new inquiry practices into their teaching, especially regarding classroom discourse. Our results suggest that an immersive inquiry experience is effective at beginning a shift towards reform-aligned science and engineering instruction but that early elementary educators require additional support for full mastery.  相似文献   

4.
This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in science teaching and worked in design teams to prepare technology-enhanced biology, chemistry and physics lessons. Through collaboration in design teams, teachers were able to make science animations using PowerPoint and record videos to use in their teaching. The designed lessons were taught in the classroom and reflected upon thereafter by all teachers. In order to determine the change in teachers’ technology integration knowledge and skills, data were collected before and after the professional development arrangement by using questionnaire, interview and observation data. Focus group discussion and reflection questionnaire data were used to assess teachers’ experience of working in design teams at the end of the professional development arrangement. Findings showed an increase in teachers’ technology integration knowledge and skills between pre- and post-measurements. Collaboration in design teams had the potential for teachers to share knowledge, skills, experience and challenges related to technology-enhanced teaching.  相似文献   

5.
Many innovative teaching approaches lack classroom impact because teachers consider the proposals impractical. Making a teaching approach practical requires instrumentality (procedures), congruence (local fit), and affordable cost (limited time and resources).This paper concerns a study on the development and effects of a participatory design based teacher training trajectory aimed at making guided discovery learning (GDL) practical for student biology teachers. First, we identified practical heuristics for designing GDL lessons by analyzing design protocols made by biology teachers who are experts in GDL. Next we inventoried student responses to their regular lessons and to GDL based lessons. Based on this we prepared a teacher training program for eleven student biology teachers in which they applied the heuristics and stepwise extended their teaching repertoire in the direction of GDL. The participants’ design processes and resulting lesson plans were scored on both use of design heuristics and GDL characteristics. The participants were interviewed about their motivational beliefs before and after the program. Results showed that student teachers are able to design GDL lessons and used the heuristics to design GDL lessons. Their motivation for implementing GDL in their classroom had increased substantially. The paper concludes with a critical reflection on our method of participatory design and its applicability.  相似文献   

6.
Teaching students how to conduct authentic scientific inquiry is an essential aspect of recent science education reform efforts. Our National Science Foundation-funded GK-12 program paired science graduate students—fellows—with secondary science teachers in order to enhance inquiry-based instruction. This research examined the roles of the fellows, teachers, and school culture in the implementation of inquiry and the fellows’ conceptions of classroom inquiry versus that in their own research. Qualitative data were collected for two academic years. Overall, the classrooms shifted toward a more inquiry-oriented approach over the academic year. Several aspects of school culture influenced inquiry implementation. Fellows described their research as similar in overall structure but less constrained by known concepts, less guided by mentors, and more in-depth than that of secondary school students. The teacher-fellow scientist partnership is a potentially effective professional development model to create positive and lasting change within the science classroom.  相似文献   

7.
The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants’ perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers’ perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.  相似文献   

8.
Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to prepare teachers for student-centered education and for the use and application of Microcomputer Based Laboratories (MBL)—a specific technology application for facilitating experiments in science education. Quantitative and qualitative data were collected to study whether the in-service arrangement impacted teacher learning. Teacher learning was determined by three indicators: (1) the ability to conduct MBL-supported student centered science lessons, (2) teachers’ reflection on those lessons and (3) students’ perceptions of the classroom environment. The results of the research indicate that the teachers’ were able to integrate MBL in their science lessons at an acceptable level and that they were able to create a classroom environment which was appreciated by their students as more investigative and open-ended.  相似文献   

9.
Worldwide, a tendency is visible in which upper secondary science curricula are innovated in the direction of context‐based education. Crucial to these innovations is the way teachers interact with newly developed teaching materials and implement them in classroom practice. The focus of our research is to identify characteristics of the interaction between innovative context‐based materials and teachers that hinder or facilitate classroom implementation as intended by the designers. Four cases of classroom implementation by four experienced teachers with different degrees of experiences in context‐based education, all implementing ‘Chemie im Kontext’ (CHiK) teaching materials, were carried out using a previously developed framework for analysis. It was found that a crucial aspect of CHiK, that of taking students' questions and using them as an orientation as the ‘focal event’ for the following lessons, was difficult to implement. The employed contexts are too general and broad to be effectively applicable as a setting in which activities such as students developing their own ideas and exploring them logically take place. Therefore, it is recommended that extensive teacher professionalization is required on this aspect to show teachers its value and to increase their repertoire of necessary teaching activities.  相似文献   

10.
This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2‐year Master of Teaching program. A specific program goal was to prepare teachers to use technology to support reform‐based science instruction. To this end, the program integrated technology instruction across five courses and situated this instruction within the context of learning and teaching science. A variety of data sources were used to characterize the participants' intentions and instructional practices, including classroom observations, lesson plans, interviews, and written reflections. Data analysis followed a constant comparative process with the goal of describing if, how, and why the participants integrated technology into their instruction and the extent to which they applied, adapted, and innovated upon what they learned in the science teacher preparation program. Results indicate that all participants used technology throughout their student teaching for reform‐based science instruction. Additionally, they used digital images, videos, animations, and simulations to teach process skills, support inquiry instruction, and to enhance student engagement in ways that represented application, adaptation, and innovation upon what they learned in the science teaching methods program. Participants cited several features of the science teacher preparation program that helped them to effectively integrate technology into their instruction. These included participating in science lessons in which technology was modeled in the context of specific instructional approaches, collaborating with peers, and opportunities for feedback and reflection after teaching lessons. The findings of this study suggest that situated learning theory may provide an effective structure for preparing preservice teachers to integrate technology in ways that support reform‐based instruction. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:348–379, 2013  相似文献   

11.
12.
The nature of science (NOS) has become a central goal of science education in many countries. This study refers to a developmental work research program, in which four fifth-grade elementary in-service teachers participated. It aimed to improve their understandings of NOS and their abilities to teach it effectively to their students. The 1-year-long, 2012–2013, program consisted of a series of activities to support teachers to develop their pedagogical content knowledge of NOS. In order to accomplish our goal, we enabled teacher-researchers to analyze their own discourse practices and to trace evidence of effective NOS teaching. Many studies indicate the importance of examining teachers’ discussions about science in the classroom, since it is teachers’ understanding of NOS reflected in these discussions that will have a vital impact on students’ learning. Our proposal is based on the assumption that reflecting on the ways people form meanings enables us to examine and seek alternative ways to communicate aspects of NOS during science lessons. The analysis of discourse data, which has been carried out with the teacher-researchers’ active participation, indicated that initially only a few aspects of NOS were implicitly incorporated in teacher-researchers’ instruction. As the program evolved, all teacher-researchers presented more informed views on targeted NOS aspects. On the whole, our discourse-focused professional development program with its participatory, explicit, and reflective character indicated the importance of involving teacher-researchers in analyzing their own talk. It is this involvement that results in obtaining a valuable awareness of aspects concerning pedagogical content knowledge of NOS teaching.  相似文献   

13.
This longitudinal study examined the extent to which teachers’ participation in a 3-year professional development program enhanced their self-efficacy and prompted changes in science instruction in the early elementary grades. The study used a mixed-methods design, and included 39 teachers who taught in kindergarten, first grade, or second grade classrooms in rural school districts. Data sources, administered pre-program and at the end of each year, included a self-efficacy assessment and teacher survey. Interviews and classroom observations provided corroborating data about teachers’ beliefs and science instruction. Results showed significant increases in teachers’ overall self-efficacy in teaching science, personal efficacy, and outcome expectancy efficacy during the 3 years. Gains in self-efficacy were correlated with changes in reported instructional practices, particularly student participation activities. However, changes in self-efficacy tended not to be correlated with changes in instructional time. Contextual factors beyond teachers’ direct control, such as curricular and testing requirements in mathematics and language arts influenced time allotted to science instruction.  相似文献   

14.
Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers’ practices by supporting them in the development of curriculum materials. This article reports on a multiple case study of seven high school science teachers who attended an ongoing scientist–teacher partnership professional development program at a major Southeastern research university. Our interest was to understand the capacity of this professional development program for supporting teachers in the transfer of personal learning experiences with advanced science content and skills into curriculum materials for high school students. Findings indicate that, regardless of their ultimate success constructing curriculum materials, all cases considered the research grounded professional development supports beneficial to their professional growth with the exception of collective participation. Additionally, the cases also described how supports such as professional recognition and transferability served as affordances to the process of constructing these materials. However, teachers identified multiple constraints, including personal learning barriers, their classroom context, and the cost associated with implementing some of their curriculum ideas. Results have direct implications for future research and the purposeful design of professional development experiences through scientist-teacher partnerships.  相似文献   

15.
Abstract

High school underrepresented minority students in the US are at an increased risk of dropping out of the STEM pipeline. Based on expectancy-value theory, we examined if Latino students’ perception of support from parents, siblings/cousins, teachers, and friends in 10th grade predicted their science ability self-concepts and values, which in turn predicted their classroom engagement. Survey data were collected from 104 Latino high school students and their science teachers. The findings suggest that adolescents’ perceptions of overall support and home-based support predicted adolescents’ science ability self-concepts at 10th grade while controlling for their 9th grade self-concepts. Although adolescents reported high support from teachers, teacher or school-based support alone was not a strong correlate of their motivational beliefs. Perceived support was indirectly related to classroom engagement through adolescents’ ability self-concepts. Feeling supported across home and school may be necessary to sustain adolescents’ science motivational beliefs and, in turn, their science classroom engagement.  相似文献   

16.
The impact of a professional development experience involving scientists and fourth to eighth grade teachers of science was explored. Teachers attended a summer program at a research facility where they had various experiences such as job shadowing and interviewing scientists. They also participated in authentic inquiry investigations and planned inquiry units for their classrooms. Data on teachers’ understanding and implementation of inquiry were collected through surveys, questionnaires, and classroom observations. Findings show that the teachers’ understanding of inquiry improved and most participants were able to successfully implement inquiry science in their classrooms. Barriers to the implementation of inquiry practices and the impact of specific experiences with the scientists were explored.  相似文献   

17.
李中国 《教育研究》2012,(8):120-126
从科学课程标准出发,通过对科学课程标准的解析和团体焦点访谈及其结果分析,构建科学知识、探究能力、科学态度三维度科学课教师工作绩效模型。通过科学课教师胜任特征对学生学习效果作用机理的分析和调查,实证研究科学课教师胜任特征与工作绩效的关系。结果表明,科学课教师的五维度胜任特征对科学课教师工作绩效具有正向关系,但胜任特征对绩效不同维度的影响存在差异。培养能够胜任的科学课教师,建议深化培养目标,实施适性教育;优化课程设置,加强实践设计;创新教学模式,注重主体参与;重构评测体系,深化形成性评测。  相似文献   

18.
In science education in the Netherlands new, context‐based, curricula are being developed. As in any innovation, the outcome will largely depend on the teachers who design and implement lessons. Central to the study presented here is the idea that teachers, when designing lessons, use rules‐of‐thumb: notions of what a lesson should look like if certain classroom outcomes are to be reached. Our study aimed at (1) identifying the rules‐of‐thumb biology teachers use when designing context‐based lessons for their own classroom practice, and (2) assessing how these personal rules‐of‐thumb relate to formal innovative goals and lesson characteristics. Six biology teachers with varying backgrounds designed and implemented a lesson or series of lessons for their own practice, while thinking aloud. We interviewed the teachers and observed their lessons. Our results suggest that rules‐of‐thumb, which differed substantially among the teachers, indeed to a great extent guide the decisions teachers make when designing (innovative) lessons. These rules‐of‐thumb were often strongly associated with intended lesson outcomes. Also, teachers’ personal rules‐of‐thumb were more powerful in determining the lesson design than formal innovative goals and lesson characteristics. The results of this study encourage more research into how rules‐of‐thumb reflect teachers’ practical knowledge, for which suggestions are made.  相似文献   

19.
Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study was to develop a better understanding of the ways in which preservice elementary teachers mobilize and adapt existing science curriculum materials to plan inquiry‐oriented science lessons. Using quantitative methods, we investigated preservice teachers' curriculum design decision‐making and how their decisions influenced the inquiry orientations of their planned science lessons. Findings indicate that preservice elementary teachers were able to accurately assess how inquiry‐based existing curriculum materials are and to adapt them to make them more inquiry‐based. However, the inquiry orientations of their planned lessons were in large part determined by how inquiry‐oriented curriculum materials they used to plan their lessons were to begin with. These findings have important implications for the design of teacher education experiences that foster preservice elementary teachers' pedagogical design capacities for inquiry, as well as the development of inquiry‐based science curriculum materials that support preservice and beginning elementary teachers to engage in effective science teaching practice. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:820–839, 2010  相似文献   

20.
《学习科学杂志》2013,22(4):495-547
This article tells the story of the design of Learning by Design(tm) (LBD), a project-based inquiry approach to science learning with roots in case-based reasoning and problem-based learning, pointing out the theoretical contributions of both, classroom issues that arose upon piloting a first attempt, ways we addressed those challenges, lessons learned about promoting learning taking a project-based inquiry approach, and lessons learned about taking a theory-based approach to designing learning environments. LBD uses what we know about cognition to fashion a learning environment appropriate to deeply learning science concepts and skills and their applicability, in parallel with learning cognitive, social, learning, and communication skills. Our goal, in designing LBD, was to lay the foundation in middle school for students to be successful thinkers, learners, and decisionmakers throughout their lives and especially to help them begin to learn the science they need to know to thrive in the modern world. LBD has students learn science in the context of achieving design-and-build challenges. Included in LBD's framework is a set of ritualized and sequenced activities that help teachers and students acclimate to the culture of a highly collaborative, learner-centered, inquiry-oriented, and design-based classroom. Those ritualized activities help teachers and students learn the practices of scientists, engineers, and group members in ways that they can use outside the classroom. LBD is carefully crafted to promote deep and lasting learning, but we have learned that careful crafting is not enough for success in putting a collaborative inquiry approach into practice. Also essential are fostering a collaborative classroom culture in which students want to be engaged in deep learning and where the teacher sees herself as both a learner and a facilitator of learning, trusts that with her help the students can learn, and enthusiastically assumes the roles she needs to take on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号