首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Goaltenders in ice hockey are the only players that are on the ice for the entire game. Their position exposes them to impacts from collisions with other players, falls to the ice, and puck impacts. In competitive ice hockey leagues, head injuries resulting from puck impacts have been reported with some cases resulting in ending the player’s career. Considerable research has been conducted to assess the performance of hockey helmets; however, few have assessed the performance of goaltenders’ masks. The purpose of this study was to compare the capacity of four goaltenders’ masks for the protection from puck impact as measured by head acceleration and peak force. A Hybrid III headform was fitted with four different goaltender masks and impacted with a hockey puck in three locations at 25 m/s. The masks were found to vary in the level of protection they offered as the mask with the thickest liner resulted in lower forces than the thinnest mask for side impacts; however, the thinnest mask resulted in the lowest force for front impacts. Despite performance differences at specific locations, no one mask proved to be superior as peak acceleration and peak force values did not exceed the thresholds necessary for concussion.  相似文献   

2.
ABSTRACT

Goaltenders in the sport of ice hockey are at high risk for concussions from falls to the ice, player collisions and puck impacts. However, current methods used to certify helmets only consider head accelerations for drop tests which may not describe all common injury mechanisms relating to concussion. The purpose of this study was to describe the characteristics of 3 events associated with concussions for ice hockey goaltenders. A helmeted medium National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform was impacted under conditions representing 3 injury events. Three impact locations’ velocities were selected for each event based on video analysis of real-world concussive events. Peak resultant linear acceleration, rotational acceleration and rotational velocity of the headform were measured. The University College Dublin Brain Trauma Model (UCDBTM) was used to calculate maximum principal strain (MPS) and von Mises stress in the cerebrum. Each impact event produced a unique dynamic response and brain stress and strain values. This demonstrates that a single impact event (i.e. falls) cannot adequately describe all impact events. As a result, impact protocols which assess multiple impact events such as the protocol described in this study should be used to evaluate ice hockey goaltender masks.  相似文献   

3.
ABSTRACT

The skating acceleration to maximal speed transition (sprint) is an essential skill that involves substantial lower body strength and effective propulsion technique. Coaches and athletes strive to understand this optimal combination to improve performance and reduce injury risk. Hence, the purpose of this study was to compare body centre of mass and lower body kinematic profiles from static start to maximal speed of high calibre male and female ice hockey players on the ice surface. Overall, male and female skaters showed similar centre of mass trajectories, though magnitudes differed. The key performance difference was the male’s greater peak forward skating speed (8.96 ± 0.44 m/s vs the females’ 8.02 ± 0.36 m/s, p < 0.001), which was strongly correlated to peak leg strength (R 2 = 0.81). Males generated greater forward acceleration during the initial accelerative steps, but thereafter, both sexes had similar stride-by-stride accelerations up to maximal speed. In terms of technique, males demonstrated greater hip abduction (p = 0.006) and knee flexion (p = 0.026) from ice contact to push off throughout the trials. For coaches and athletes, these findings underscore the importance of leg strength and widely planted running steps during the initial skating technique to achieve maximal skating speed over a 30 m distance.  相似文献   

4.
Ice hockey body checks involving direct shoulder-to-head contact frequently result in head injury. In the current study, we examined the effect of shoulder pad style on the likelihood of head injury from a shoulder-to-head check. Shoulder-to-head body checks were simulated by swinging a modified Hybrid-III anthropomorphic test device (ATD) with and without shoulder pads into a stationary Hybrid-III ATD at 21 km/h. Tests were conducted with three different styles of shoulder pads (traditional, integrated and tethered) and without shoulder pads for the purpose of control. Head response kinematics for the stationary ATD were measured. Compared to the case of no shoulder pads, the three different pad styles significantly (p < 0.05) reduced peak resultant linear head accelerations of the stationary ATD by 35–56%. The integrated shoulder pads reduced linear head accelerations by an additional 18–21% beyond the other two styles of shoulder pads. The data presented here suggest that shoulder pads can be designed to help protect the head of the struck player in a shoulder-to-head check.  相似文献   

5.
Ice hockey requires rapid transitions between skating trajectories to effectively navigate about the ice surface. Player performance relates in large part to effective change-of-direction manoeuvres, but little is known about how those skills are performed mechanically and the effect of equipment design on them. The purpose of this study was to observe the kinetics involved in those manoeuvres as well as to compare whether kinetic differences may result between two skate models of varying ankle mobility. Eight subjects with competitive ice hockey playing experience performed rapid lateral (90°) left and right change-of-direction manoeuvres. Kinetic data were collected using force strain gauge transducers on the blade holders of the skates. Significantly greater forces were applied by the outside skate (50–70% body weight, %BW) in comparison to the inside skate (12–24%BW, p < 0.05). Skate model and turn direction had no main effect, though significant mixed interactions between leg side (inside/outside) with skate model or turn direction (p < 0.05) were observed, with a trend for left-turn dominance. This study demonstrates the asymmetric dynamic behaviour inherent in skating change-of-direction tasks.  相似文献   

6.
The forward skating start is a fundamental skill for ice hockey players, yet extremely challenging given the low traction of the ice surface. The technique for maximum skating acceleration of the body is not well understood. The aim of this study was to evaluate kinematic ice hockey skating start movement technique in relation to a skater’s skill level. A 10-camera motion capture system placed on the ice surface recorded “hybrid-V” skate start movement patterns of high and low calibre male ice hockey players (n = 7, 8, respectively). Participants’ lower body kinematics and estimated body centre of mass (CoM) movement during the first four steps were calculated. Both skate groups had similar lower body strength profiles, yet high calibre skaters achieved greater velocity; skating technique differences most likely explained the performance differences between the groups. Unlike over ground sprint start technique, skating starts showed greater concurrent hip abduction, external rotation and extension, presumably for ideal blade-to-ice push-off orientation for propulsion. Initial analysis revealed similar hip, knee and ankle joint gross movement patterns across skaters, however, further scrutiny of the data revealed that high calibre skaters achieved greater vertical CoM acceleration during each step that in turn allowed greater horizontal traction, forward propulsion, lower double-support times and, accordingly, faster starts with higher stride rates.  相似文献   

7.
Abstract

Detailed time-series of the resultant joint moments and segmental interactions during soccer instep kicking were compared between the preferred and non-preferred kicking leg. The kicking motions of both legs were captured for five highly skilled players using a three-dimensional cinematographic technique at 200 Hz. The resultant joint moment (muscle moment) and moment due to segmental interactions (interaction moment) were computed using a two-link kinetic chain model composed of the thigh and lower leg (including shank and foot). The mechanical functioning of the muscle and interaction moments during kicking were clearly illustrated. Significantly greater ball velocity (32.1 vs. 27.1 m · s?1), shank angular velocity (39.4 vs. 31.8 rad · s?1) and final foot velocity (22.7 vs. 19.6 m · s?1) were observed for the preferred leg. The preferred leg showed a significantly greater knee muscle moment (129.9 N · m) than the non-preferred leg (93.5 N · m), while no substantial differences were found for the interaction moment between the two legs (79.3 vs. 55.7 N · m). These results indicate that the highly skilled soccer players achieved a well-coordinated inter-segmental motion for both the preferred and non-preferred leg. The faster leg swing observed for the preferred leg was most likely the result of the larger muscle moment.  相似文献   

8.
The forward skating start is a fundamental skill for male and female ice hockey players. However, performance differences by athlete’s sex cannot be fully explained by physiological variables; hence, other factors such as skating technique warrant examination. Therefore, the purpose of this study was to evaluate the body movement kinematics of ice hockey skating starts between elite male and female ice hockey participants. Male (n = 9) and female (n = 10) elite ice hockey players performed five forward skating start accelerations. An 18-camera motion capture system placed on the arena ice surface captured full-body kinematics during the first seven skating start steps within 15 meters. Males’ maximum skating speeds were greater than females. Skating technique sex differences were noted: in particular, females presented ~10° lower hip abduction throughout skating stance as well as ~10° greater knee extension at initial ice stance contact, conspicuously followed by a brief cessation in knee extension at the moment of ice contact, not evident in male skaters. Further study is warranted to explain why these skating technique differences exist in relation to factors such as differences in training, equipment, performance level, and anthropometrics.  相似文献   

9.
Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction–adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.  相似文献   

10.
Modern-day cricket has experienced a shift towards limited over games, where the emphasis is on scoring runs at a rapid rate. Although the use of protective equipment in cricket is mandatory, players perceive that leg guards, in particular, can restrict their motion. The aim of this study was to determine the influence of cricket leg guards on running performance. Initial testing revealed that wearing pads significantly increased the total time taken to complete three runs by up to 0.5?s compared with running without pads (P?相似文献   

11.
The aim of this study was to determine the intra-participant variabilities (i.e. intra-day and inter-day reliabilities) in leg and vertical stiffness, as well as related kinematic parameters, during treadmill running using the sine-wave method. Twenty-two healthy men ran on a treadmill at 4.44 m/s, and the flight and contact times were measured with a high-speed video camera. Three 30-s running bouts with 2-min inter-bout rests were performed to examine the intra-day reliability, and single 30-s running bouts on three separate days with 24- to 48-h inter-bout intervals were performed to examine the inter-day reliability. The reliability statistics included repeated-measure analyses of variance, average inter-trial correlations, intra-class correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation. Both leg and vertical stiffness produced high ICCs within 0.972 and 0.982, respectively, and between 0.922 and 0.873 days, respectively. High values were also observed for all of the reliability coefficients. Similar results were found regarding contact time, flight time, step length, and step rate. It was concluded that the measurements of leg and vertical stiffness, as well as related kinematic parameters, obtained using the sine-wave method during treadmill running at 4.44 m/s, were highly reliable, both within and across days.  相似文献   

12.
Determining an athlete’s speed from broadcast video is a common practice in sport. Many software packages that perform data extraction from video files are expensive; however, open source software is also available, but lacks published validation for speed measurements. The purpose of this research was to examine the error of speed measurements extracted from video during an ice hockey skating exercise using open source software. The subject completed four exercises, at two speeds recorded by broadcast cameras set at five angles. The speeds from the broadcast cameras were compared to speeds calculated from a high-speed camera placed orthogonally to the exercise. Speeds from the broadcast cameras correlated well with the high-speed video for motion more than 12 m away from the broadcast camera. When comparing all the measured speeds, no significant difference was found between the speeds calculated by the high-speed camera (slow: 4.46 m/s ± 0.2; fast: 7.2 m/s ± 0.7) and the speed calculated from the broadcast cameras (slow: 4.50 m/s ± 0.4; fast: 7.34 m/s ± 0.6) (p > 0.05). The open source method was found to be less accurate when the athlete was close to (within 12 m of camera position) or moving directly toward the broadcast cameras.  相似文献   

13.
Abstract

The aim of this study was to examine the influence of leg kick on the pattern, the orientation and the propulsive forces produced by the hand, the efficiency of the arm stroke, the trunk inclination, the inter-arm coordination and the intra-cyclic horizontal velocity variation of the hip in sprint front crawl swimming. Nine female swimmers swam two maximal trials of 25 m front crawl, with and without leg kick. Four camcorders were used to record the underwater movements. Using the legs, the mean swimming velocity increased significantly. On the contrary, the velocity and the orientation of the hand, the magnitude and the direction of the propulsive forces, as well as the Froude efficiency of the arm stroke were not modified. The hip intra-cyclic horizontal velocity variation was also not changed, while the index of coordination decreased significantly. A significant decrease (13%) was also observed in the inclination of the trunk. Thus, the positive effect of leg kick on the swimming speed, besides the obvious direct generation of propulsive forces from the legs, could probably be attributed to the reduction of the body’s inclination, while the generation of the propulsive forces and the efficiency of the arm stroke seem not to be significantly affected.  相似文献   

14.
Eccentric contractions that provide spring energy can also cause muscle damage. The aim of this study was to explore leg and vertical stiffness following muscle damage induced by an eccentric exercise protocol. Twenty active males completed 60 minutes of backward-walking on a treadmill at 0.67 m/s and a gradient of ? 8.5° to induce muscle damage. Tests were performed immediately before; immediately post; and 24, 48, and 168 hours post eccentric exercise. Tests included running at 3.35 m/s and hopping at 2.2 Hz using single- and double-legged actions. Leg and vertical stiffness were measured from kinetic and kinematic data, and electromyography (EMG) of five muscles of the preferred limb were recorded during hopping. Increases in pain scores (over 37%) occurred post-exercise and 24 and 48 hours later (p < 0.001). A 7% decrease in maximal voluntary contraction occurred immediately post-exercise (p = 0.019). Changes in knee kinematics during single-legged hopping were observed 168 hours post (p < 0.05). No significant changes were observed in EMG, creatine kinase activity, leg, or vertical stiffness. Results indicate that knee mechanics may be altered to maintain consistent levels of leg and vertical stiffness when eccentric exercise-induced muscle damage is present in the lower legs.  相似文献   

15.
Abstract

Leg stiffness is a modifiable mechanical property that may be related to soft tissue injury risk. The purpose of this study was to examine mean leg stiffness and bilateral differences in leg stiffness across an entire professional Australian Football League (AFL) season, and determine whether this parameter was related to the incidence of lower body soft tissue injury. The stiffness of the left and right legs of 39 professional AFL players (age 24.4 ± 4.4 years, body mass 87.4 ± 8.1 kg, stature 1.87 ± 0.07 m) was measured using a unilateral hopping test at least once per month throughout the season. Injury data were obtained directly from the head medical officer at the football club. Mean leg stiffness and bilateral differences in leg stiffness were compared between the injured and non-injured players. There was no difference between the season mean leg stiffness values for the injured (219.3 ± 16.1 N · m?1 · kg?1) and non-injured (217.4 ± 14.9 N · m?1 · kg?1; P = 0.721) groups. The injured group (7.5 ± 3.0%) recorded a significantly higher season mean bilateral difference in leg stiffness than the non-injured group (5.5 ± 1.3%; P = 0.05). A relatively high bilateral difference in leg stiffness appears to be related to the incidence of soft tissue injury in Australian football players. This information is of particular importance to medical and conditioning staff across a variety of sports.  相似文献   

16.
The aim of our study was to assess the effect of the limbs’ actions on the nonlinear properties of the four competitive swimming strokes. Forty-nine swimmers performed all-out sprints at front-crawl, backstroke, breaststroke and butterfly, each one at full stroke (FS), only the arms’ stroke (AS), and only leg kicking (LK), in a total of 12 bouts, 6 per day. A speedo-meter cable was attached to the swimmer’s hip, to collect the speed-time raw data (= 50Hz). Velocity, speed fluctuation, sample entropy and fractal dimension were derived from the speed-time series. Significant and moderate-strong effects were noted for both stroke and condition in all variables in the study (p ≤ 0.001; 0,560<η2 < 0,952). The four competitive strokes and their three conditions exhibited nonlinear properties. The swimming pattern was less complex and more predictable for LK in comparison to AS and FS. Breaststroke and butterfly have more complex but more predictable patterns than backstroke and front-crawl.  相似文献   

17.
This investigation assessed whether a Technique Refinement Intervention designed to produce pronounced vertical hip displacement during the kicking stride could improve maximal instep kick performance. Nine skilled players (age 23.7 ± 3.8 years, height 1.82 ± 0.06 m, body mass 78.5 ± 6.1 kg, experience 14.7 ± 3.8 years; mean ± SD) performed 10 kicking trials prior to (NORM) and following the intervention (INT). Ground reaction force (1000 Hz) and three-dimensional motion analysis (250 Hz) data were used to calculate lower limb kinetic and kinematic variables. Paired t-tests and statistical parametric mapping examined differences between the two kicking techniques across the entire kicking motion. Peak ball velocities (26.3 ± 2.1 m · s?1 vs 25.1 ± 1.5 m · s?1) and vertical displacements of the kicking leg hip joint centre (0.041 ± 0.012 m vs 0.028 ± 0.011 m) were significantly larger (P < 0.025) when performed following INT. Further, various significant changes in support and kicking leg dynamics contributed to a significantly faster kicking knee extension angular velocity through ball contact following INT (70–100% of total kicking motion, < 0.003). Maximal instep kick performance was enhanced following INT, and the mechanisms presented are indicative of greater passive power flow to the kicking limb during the kicking stride.  相似文献   

18.
This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands’ entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand’s backward movement and low break-even point of the first undulation; T3: time between the hand’s arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand’s release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.  相似文献   

19.
Abstract

The aim of this study was to examine the relationships among biological maturity, physical size, relative age (i.e. birth date), and selection into a male Canadian provincial age-banded ice hockey team. In 2003, 619 male ice hockey players aged 14 – 15 years attended Saskatchewan provincial team selection camps, 281 of whom participated in the present study. Data from 93 age-matched controls were obtained from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991 – 1997). During the initial selection camps, birth dates, heights, sitting heights, and body masses were recorded. Age at peak height velocity, an indicator of biological maturity, was determined in the controls and predicted in the ice hockey players. Data were analysed using one-way analysis of variance, logistic regression, and a Kolmogorov-Smirnov test. The ice hockey players selected for the final team were taller, heavier, and more mature (P < 0.05) than both the unselected players and the age-matched controls. Furthermore, age at peak height velocity predicted (P < 0.05) being selected at the first and second selection camps. The birth dates of those players selected for the team were positively skewed, with the majority of those selected being born in the months January to June. In conclusion, team selectors appear to preferentially select early maturing male ice hockey players who have birth dates early in the selection year.  相似文献   

20.
The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant asymmetry was observed during stance, initial and terminal swing phases, where the hemiplegic limb was found shorter by using a paired t-test at 51 sample points (p < .05). The hemiplegic side was restricted in achieving maximal length during terminal swing. The ratio between the maximal dynamic leg length during the stance phase to minimal dynamic leg length during the swing phase was found higher on the non-involved side and lower on the hemiplegic side (p < .05). Quantifying clearance mechanics based on dynamic leg length can provide an additional insight into the analysis of gait patterns and might assist in detecting time of abnormal kinematic deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号