首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
圆锥曲线的中点弦在平面解几中是一种很常见的问题,解决这类问题的一般方法是由直线方程和圆锥曲线方程组成方程组,消去y(或x)后得到关于x(或y)的一元二次方程,再利用中点公式解决.当由直线方程、圆锥曲线方程组成的方程组较复杂时,用这种方法就较繁琐,运算量大.此时  相似文献   

2.
<正>在学习圆的知识时,我们知道,以圆内某一点为中点的弦有以下结论:设圆C:(x-a)2+(y-b)2=r2,以P为中点的圆的弦的斜率为k,则有k·kPC=-1.那么在圆锥曲线中有没有类似的结论呢?笔者对此进行了一番探讨,得到如下结果.  相似文献   

3.
对于圆锥曲线,我们可归纳出如下结论: 方程①、②、③形式优美,记忆方便,应用它可简捷地处理一类与圆锥曲线中点弦有关的问题.  相似文献   

4.
中点弦问题就是当直线与圆锥曲线相交时,得到一条弦,进一步研究弦的中点的问题.中点弦问题是解析几何中的重点和热点问题,在高考试题中常常出现.解决圆锥曲线的中点弦问题,点差法是一个行之有效的方法,点差法顾名思义是代点作差的办法.其步骤可简要地叙述为:①设出弦的两个端点的坐标;②将端点的坐标代入圆锥曲线方程相减;③得到弦的中点坐标  相似文献   

5.
直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题.其解  相似文献   

6.
圆锥曲线中由“弦”展开的问题层出不穷,高考中常见的有:弦长问题、与弦的中点有关的对称问题、弦的中点的轨迹问题等.这些问题集中展示了解析几何的主要解题思想和方法,综合考查了直线与圆锥曲线的位置关系等解析几何的主要内容,因而倍受高考青睐.其中弦长问题、与弦的中点有关的对称问题,已被大家熟知,本文欲对其中的“弦的中点的轨迹问题”做一解法归类.  相似文献   

7.
性质 1 圆 (x -h) 2 (y-k) 2 =r2 中 ,以P0 (x0 ,y0 ) (x0 ≠h或y0 ≠k)为中点弦的所在的直线方程为(x0 -h) (x-x0 ) (y0 -k) (y- y0 ) =0 .当h =k=0时方程变为x0 (x -x0 ) y0 (y - y0 ) =0 .证明 设弦所在直线与圆交于A(x1,y1) ,B(x2 ,y2 ) ,所以有(x1-h) 2 (y1-k) 2 =r2 ,(1)(x2 -h) 2 (y2 -k) 2 =r2 . (2 )(2 ) - (1)得   (x2 -x1) (x1 x2 - 2h)   =- (y2 - y1) (y1 y2 - 2k) .当x2 ≠x1时 ,可变为x1 x2 - 2hy1 y2 - 2k =- y2 - y1x2 -x1.又P0 (x0 ,y0…  相似文献   

8.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

9.
本文介绍圆锥曲线与中点弦有关的一个性质.性质1如图1,已知点P是椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的弦MN的中点,与MN平行的直线交椭圆于A,B两点,AP与椭圆交于点C,BP与椭圆交于点D,则CD∥AB.证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,  相似文献   

10.
本通过几个定理给出圆锥曲线定长弦的中点的轨迹方程。  相似文献   

11.
在平面解析几何中,经常会遇到这样的一类问题,已知如下条件(1)经过某点的直线与圆锥曲线相交两点,使这点为两交点的中点;(2)圆锥曲线  相似文献   

12.
很多数学报及兄弟刊物都介绍过中点弦所在直线方程问题.有的甚至给出了公式式的结论,但结论较为复杂不易记忆.本文介绍两种更为行之有效的方法. 我们先证明一个命题:二次曲线F(x,y)=0,以定点P(x0,y0)为中点的弦所在的直线方程为:F(2x0-x,2y0-y)=0.然后便可套用结论,直接得出方程. 证明:设以P(X0,y0)为中点的二次曲线F(x,y)=0的弦的两个端点分别为A、B,且A(x,y),则B(2x0-x,2y0-y),由于A、B均是二次曲线F(x,y)=0上的点,从而可得 F(x,y)=0 ① F(2x0-x,2y0-y)=0 ②  相似文献   

13.
圆锥曲线弦的中点问题是解析几何中的基本问题,同时也是历届高考中出现得最多的一类问题.下面,我们给出一种处理此类问题的统一的较为简捷的方法:即若圆锥曲线F(x,y)=0的弦AB的中点为(x,y),则可设A(x+m,y+n),B(x-m,y—n).当直线AB的斜率存在时k=n/m,  相似文献   

14.
吴梅红老师在文章依寸圆的弦中点坐标与弦的斜率关系的联想》中对圆及其有心二次曲线的弦中点坐标与弦的斜率关系作类比,得到如下性质.  相似文献   

15.
巧设弦中点,妙用作差法,破解弦问题弦中点取决于弦两端点的坐标和,弦斜率取决于弦两端点的坐标差,这对两端点坐标的孪生兄弟,互帮互助,它们的直接关系孕育在设点代入、作差之中.在解决有关弦斜率、隐含弦中点的问题时,若巧设弦中点,妙用作差法,以弦中点坐标作辅助元,则往往可简捷获解.一、给出弦的斜率情况例1斜率为1的直线l与双曲线3x2-y2=1相交于不同的两点A,B,若A,B两点到直线4x-y-1=0的距离  相似文献   

16.
设A(x_1,y_1),B(x_2,y_2)两点在椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)上,M(x_0,y_0)是AB的中点,则有(?)由③-④得  相似文献   

17.
对于方程形如Ax2+By2=1(A、B同正或异号)(*)的曲线,我们不妨称之为有心圆锥曲线.性质设AB是有心圆锥曲线(*)不与坐标轴平行的任一弦,O为坐标原点,点M为弦上的一点,那么点M为弦AB的  相似文献   

18.
19.
直线与圆锥曲线问题,一直是高中数学研究的重点所在,而作为直线与圆锥曲线中特殊的点——弦中点问题,更是为我们平常之所见.一、椭圆与双曲线的弦中点性质设AB为圆锥曲线x2/m+y2/n=1的一条不垂直于坐标轴的弦,异于原点的点P(x0,y0)为AB中点,则kAB·kOP=-n/m.证明(点差法)如图1,设A(x1,  相似文献   

20.
寿玲玉  楼可飞 《数学教学》2006,(10):23-24,45
例已知抛物线y2=4x外一点P(5/2,1).(1)过点P的直线l与抛物线交于A、B两点,若点P刚好为弦AB的中点.(Ⅰ)求直线l的方程; (Ⅱ)若过线段AB上任一点P1(不含端点A、B)作倾斜角为π-arctan2的直线l1交于A1、B1两点,求证:|P1A|·|P1B|=|P1A1|·|P1B1|.分析:(Ⅰ)y=2x-4;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号