首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
赛题 已知a,b,c为直角三角形的三边长,其中c为斜边长,求使a3+b3+c3/abc≥k成立的k的最大值(第四届北方数学邀请赛试题). 由文[1]知,文[2]“利用导数的知识给出了两种证明方法,指出不能用均值不等式和幂平均不等式求a3+b3+c3/abc的最小值.”文[1]作者以均值不等式求出了a3+b3+c3/abc的最小值.  相似文献   

2.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

3.
函数f(x)=a/x-c+b/d-x(a,b,c,d∈R^+,c〈x〈d),求其最小值,文[1][2]采用均值不等式或三角换元变换去求解,  相似文献   

4.
王俊青 《山东教育》2002,(26):36-37
在整个高中数学中,求函数的最值是一项重要内容。这类问题常和生活实际联系比较密切。由于应用问题已进入高考,而且具有强烈的时代气息,所以最值问题也是高考的热点和难点问题。求函数最值的方法有很多种,利用均值不等式求最值是一种比较常用的方法。对均值不等式,高考已限制在二元、三元均值不等式的应用。以三元均值不等式为例:若a、b、c∈R+,则a+b+c≥33abc姨(当且仅当a=b=c时等号成立)利用此不等式求最值时应注意以下几个问题:(1)a、b、c∈R+;(2)a+b+c或abc为常数;(3)不等式中等号成立的条件必须具备。…  相似文献   

5.
1.引例2008年南京大学自主招生考试第二大题为:设a,b,c为正数,且a+b+c=1,求(a+1/a)2+(b+1/b)2+(c+1/c)2的最小值.该题是不等式的一个常见问题,可以用基本不等式或柯西不等式求解,还可以推广为:  相似文献   

6.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

7.
2005年全国高中数学联赛加试题第二题如下:设正数 a、b、c、x、y、z 满足 cy+bz=a;az+cx=b;bx+ay=c,求函数 f(x,y,z)=x~2/(1+x)+y~2/(1+y)+z~2/(1+z)的最小值.本文运用构造法给出一个比较简捷的解法,供大家参考.根据条件不等式及待求分式结构,构造随机变量ξ的分布列如下:  相似文献   

8.
题目 已知正数a,b,c满足a+2b +3c≤abc,求5a+22b+c的最小值.文[1]用很难想到的配凑和多元均值不等式解答,由于太略,使人看不懂,文[2]把文[1]的太略详尽出来,虽然看懂了,但技巧之高,难度之大让人莫及,那么这样的题有没有好想也比较好做的解法呢?若有,何必去强求很难想到的技巧呢?其实,用导数求函数的值域(最值)就可自然的解答.  相似文献   

9.
题目已知a〉b〉0,求a^2+16/b(a-b)的最小值. 思路1直接应用二元均值不等式a^2+16/b(a-b)≥2√a^2·16/b(a-b) 求最值,解题难点在于不等式右端不是定值,或者继续应用均值不等式但不能满足取等条件,  相似文献   

10.
题目(第三届北方数学奥林匹克邀请赛)设△ABC的三边长分别为a、b、c,且a+b+c=3,求f(a,b,c)=a~2+b~2+c~2+4/3abc的最小值.文[2]给出三种均值不等式解法,经研究,笔者再给出一种恒等变形解法,顺便得到f(a,b,c)的上确界.  相似文献   

11.
求最大值或最小值的问题是较重要和较常见的题型之一,利用基本不等式求解又是较常用的方法.但学生在运用基本不等式求最值问题时往往出错,现就学生经常出现的错误归类予以剖析.1 忽视基本不等式成立的充分条件而出错例1 已知a、b∈R~ ,且a≠1,b≠1,求log_ab log_ba的最值.错解log_ab log_ba≥2(2~(1/(log_ab×log_ba)))=2故log_ab log_ba的最小值是2.剖析 基本不等式“a b≥2(2~1/ab)”成立的充分条件是“a、b∈R~-”.在上述解答中的对数值log_ab和log_ba  相似文献   

12.
题若正数a、b满足ab=a+b+3,求ab的最小值.分析这是一道典型的最值问题,容易想到用均值不等式,但我想可能存在别的解法.经过一番探索,我发现即使同样用均值不等式,解法也可不尽相同,直接用可以,对原式变形后再用也可以.我还注意到原式中的ab和a+b,自然想到了韦达定理,于是构造出一元二次方程求解,方法更妙.  相似文献   

13.
别证与体悟     
问题 (江苏省盐城市2008年2月调研卷试题)设函数 f(x)=-x~3-2mx~2-m~2x+1-m(其中 m>-2)的图象在 x=2处的切线与直线 y=-5x+12平行.(Ⅰ)求 m 的值;(Ⅱ)求函数 f(x)在区间[0,1]上的最小值;(Ⅲ)若 a≥0,b≥0,c≥0,且 a+b+c=1,试根据上述(Ⅰ)、(Ⅱ)的结论证明a/(1+a~2)+b/(1+b~2)+c/(1+c~2)≤9/(10).(*)其中不等式(*)的证明,耐人寻味,催人下笔.谨  相似文献   

14.
在初中数学中,常常出现求“最值”的问题.这里介绍几种求“最值”的特殊方法.一、构造方程例1已知:a、b、c均为实数,且满足a b c=2,abc=4.(1)求a、b、c中最大者的最小值;(2)求|a| |b| |c|的最小值.解∵a b c=2>0,abc=4>0.∴a、b、c中应为两负一正.设a>0,b<0,c<0.(1)由a b c=2,a  相似文献   

15.
有时我们会遇到这样一类求极值的问题,如:已知x、y、zeR“且Zx+3y+sz一民求XyZ的最大值。根据均值不等式我们知道,当函数式中各项之和为定位时,其积有最大值。因此可用均值不等式求之。解:”.”2X>0,3y>0,SZ>0。且ZX+3y+SZ一6由均值不等式得这本身是一个小问题,如果我们把这个小题大做,就可做出如下的文章。将问题做如下推广:推广1:已知x、y、z、a、b、c6R”且ax+by+cz—K(K为定值),求xyz的最大值。解:同上解法得推广2:已知x、v、…、z、a、b…、c6R”且ax+by+…+cz—K(K为定值)。求x·y…Z的最大值…  相似文献   

16.
有一类求最值的问题常让学生的解题思路受阻,以致所解的答案是对的,而解法是错的,兹举两例剖析于下: 例1 已知a,b,c∈R~ ,且a b c=1,求使不等式恒成立的最小整数K. 解 欲求A的最小值,需先求的最大值. 由比较法易证(a b c)~2≤2(a~2 b~2 c~2),当且仅当a=b=c时等号成立,所以  相似文献   

17.
对函数f(x)=x-c/a+d-x/b(a,b,c,d∈R^+,c<x<d),我们在求其最小值的时候,可借助均值不等式或三角函数变换来进行求解,但对等号成立的条件我们要慎重考虑,否则会出现形似完美实则错误的解题过程,下面先举例子加以说明.  相似文献   

18.
(2008·全国联赛吉林区预赛题)已知正数a、b、c满足2a+4b+7c≤2abc,求a+b+c的最小值.文[1]从运用均值不等式的角度合理拆分变元,文[2]运用配方法进而转化为函数问题,受两文启发,笔者运用主元与次元的思想重新考虑该问题.  相似文献   

19.
沈红霞 《数学教学》2005,(10):30-32
均值不等式a+b≥2√ab(a、b∈R^+)不仅可用于证明不等式,也可用于求某些函数的最值,在中学代数里有着非常重要的地位和作用.用均值不等式求最值,总是在当且仅当a=6成立时函数才能取得最值.如。  相似文献   

20.
<正>均值不等式是高中数学不等式的一个重要内容,是历年高考与竞赛的命题热点和重点考查内容之一,它在证明不等式、求最值以及实际问题中有着广泛的应用.本文就均值不等式搭桥妙解数学高考题与竞赛题举例介绍如下,以作探讨.例1已知a,b为正实数,2b+ab+a=30,求关于a、b的函数y=1/ab的最小值.分析这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号