首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在数学解题过程中 ,为了实现条件向结论的转化 ,有时需要分析题目外形结构特征 ,联想到某些公式、方程、函数、不等式、几何图形及已有的解题经验 ,构造出一个新的关系结构系统来实现原问题的解决 .这种思维活动的特点在于“构造”,而构造的成功与否除需要扎实的基础知识和创造性思维外 ,很大程度上依赖于对题目结构特征的正确分析 .本文专从题目结构特征分析上谈点体会 .1 构造函数例 1 已知 f(a) =(x- 1) log23 a-6 xlog3 a+x+1,当 x∈ [0 ,1]时 ,f(a)恒为正数 ,求 a的取值范围 .分析 从表面结构看 f (a)是一个以log3 a为变量的二次函…  相似文献   

2.
同学们在学过导数的知识之后,如果能够灵活地运用导数的知识解题,常常可以使解题过程得到优化,显得简单直观.下面举例分析,希望同学们能够从中受到有益的启示. 一、判定函数的单调性 例1 判断函数f(x)=ex+1/ex在(0,+∞)上的增减性. 解析:因为f(x)=ex+1/ex, 所以f'(x)=ex-e-x=e-x(e2x-1). 当x∈(0,+∞)时,有ex>0,e2x-1>0, 所以f'(x)>0,故f(x)在(0,+∞)上是增函数.  相似文献   

3.
不单调是近几年的创新考点,题目往往以导数为载体,解题中分类讨论,转化思维,数形结合等思想方法有着广泛应用.为此特举例分析不单调问题的解题思路,供同学们学习时参考.题目(2009年浙江高考理科22题)已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1(k∈R).设函数p(x)=f(x)+g(x),若p(x)在区间(0,3)上不单调,求k的取值范围.思路1利用"p(x)在(0,3)上不单调p(x)在(0,3)上有极值点"直接求解.  相似文献   

4.
高考数学信息题是从所给材料中获取信息,并用于新问题解决的一类新题型.由于这类题立意新颖、构思精巧、解法灵活,能突出对考生的阅读理解能力、观察能力、获取信息与处理信息能力和独立研究探索问题能力的考查,因此一直是高考中的热点,备受命题者的青睐.本文结合实例对数学信息题进行分类解读.一、表格型信息题表格能集中给出解题信息,简洁明了.理解表中内容,根据数据特征找出数量关系进行计算或推理,是求解表格信息题的关键.【例1】函数f(x)=ax3+bx2+cx+d的部分数值如下:x-3-2-10123456y-80-2404001660144280则函数y=lgf(x)的定义域为.解析观察表中有三个x值使f(x)=0,联想二次函数的零点解析式y=a(x-x1)(x-x2),因而不难设出f(x)的解析式,进而求之,再解高次不等式即可求出函数y=lgf(x)的定义域.设f(x)=a(x+1)(x-1)(x-2),而f(0)=4,∴a=2,∴f(x)=2(x+1)(x-1)(x-2).要使y=lgf(x)有意义,则有f(x)=2(x+1)(x-1)(x-2)>0,由数轴标根法解得-12.∴函数y=lgf(x)的定义域...  相似文献   

5.
一、选择题1.设在[0,1]上函数f(x)的图像是连续的,且f′(x)>0,则下列关系一定成立的是().A.f(0)>0B.f(1)>0C.f(1)>f(0)D.f(1)相似文献   

6.
一、比较大小例1若logx23-logx53≥log-y23-log-y53,则A.x-y≥0B.x+y≥0C.x-y≤0D.x+y≤0分析根据所给不等式的结构特征,可考虑构造函数f(t)=logt23-logt53,利用函数的单调性即可确定x与y之间的关系.解令f(t)=logt23-logt53,则易证f(t)在(-∞,+∞)上是增函数,由题设条件得f(x)≥f(-y).根据函数f(t)的单调性,得x≥-y,即x+y≥0.选B.二、求值例2已知x,y是实数,而且满足下列方程组(x-1)3+1997(x-1)=-1,(y-1)3+1997(y-1)=1 则x+y=_____.分析要直接解出x,y显然不大可能,因此必须考虑建立x,y之间的联系.解原方程组可化为(x-1)3+1997(x-1)=-1,(1…  相似文献   

7.
<正>例1(2010年高考全国卷I理科第20(2)题)已知函数f(x)=(x+1)lnx-x+1,证明:(x-1)f(x)≥0.证法1可得f′(x)=1x+lnx>0,(f′(x))′=x-1x2.进而可得f′(x)min=f′(1)=1>0,所以f(x)是增函数.当00;当x≥1时,得f(x)≥f(1)  相似文献   

8.
“建模法”是依据题目的条件和结论的特征 ,类比联想相关数学知识 ,选择恰当的数学工具构造出新的适当的数学关系 (如公式、方程、函数或图形等 ) ,通过对这些数学关系的研究得到解题的思路 ,从而达到解题的目的。它是一种使原来的问题情景转化为易于解决的问题情景的解题方法。“建模法”常常能打破解题常规 ,另辟蹊径 ,获得简捷、明快、精巧的解答 ,对于培养学生思维的独创性有深远意义。一、构造函数1.利用函数的单调性例 1.已知 x,y∈ R,且 2 x+ 3y>2 -y+ 3-x,求证 x+ y>0。证明 :作函数 f(x) =2 x- 3-x,因为 y=2 x 为增函数 ,y=3-x为…  相似文献   

9.
构造函数解题需要较强的创新意识,是高考改革的方向,本文愿就此抛砖引玉.一、构造一次函数y=kx+b(k≠0) 例1 设a,b,c∈(-1,1),求证:ab+bc+ca>-1. 解析作辅助函数f(x)=(b+c)x+bc+1.因为f(1)=(b+1)(c+1)>0,f(-1)=(1-b)(1-c)>0,所以在(-1,1)上恒有f(x)>0.又-10,即原不等式成立.例2 设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求x  相似文献   

10.
常量与变量是数学的两个重要概念.在不同的问题中,同一个字母可能是常量,也可能是变量,具有相对性.在解题时常常被忽视或对其认识不足.现举几例,供同学们借鉴. 例1 若不等式2x-1>m(x2-1)对满足-2≤m≤2的所有m都成立,求x的取值范围. 解:原不等式化为(x2-1)m-(2x-1)<0,记f(m)=(x2-1)m-(2x-1)(-2≤m≤2).根据题意知,要使不等式成立,只要f(-2)<0且f(2)<0,即2x2+2x-3>0且 2x2-2x-1<0.解之,x的取值范围是(-1+7~(1/7))/2相似文献   

11.
<正>本文从一道高考题入手,谈谈对结构式asinθ+bcosθ最值的一些思考方法,供参考.题目(2013年高考新课标全国卷1文科第16题)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=____.本题中函数f(x)的表达式为sinx-2cosx.对于这样一类结构式asin x+bcos x的最值,解题时可以有以下一些思考方法.一、联想辅助角公式  相似文献   

12.
<正>函数的零点、方程的根、函数图象的交点问题是高考的热点.这三者之间形异质同,解题时要注意三者之间的互相转化.本文介绍解决此类问题的以下几种策略.策略1利用方程f(x)=0的根求解例1求函数f(x)={x2+2x-3,x≤0,ln x-2,x>0的零点个数.解当x≤0时,由方程x2+2x-3,x≤0,ln x-2,x>0的零点个数.解当x≤0时,由方程x2+2x-3=0,解得x=-3;  相似文献   

13.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

14.
构造法解题在近年高考、竞赛中时有出现常见的有构造函数、构造不等式、构造数列、构造几何图形等,本文将通过具体题目来说明. 一、构造函数 例 1 设f(x)=x3-6x2+9x-14,f(m)=1,f(n)=-1,求m+n的值。 解:f(x)=(x-2)3+3(x-2),∴(m-2)3+3(m-2)=1①(n-2)3+3(n-2)=-1②设F(x)=x3+3x易知F(x)=x3+3x是单调递增的奇函数,∴F(m-2)=-F(n-2)=F(2-n)∴m-2=2-n,∴m+n=4.  相似文献   

15.
我们知道x3-1=(x-1)(x2+x+1),且对于一元多项式F(x)=a1 xn+a2xn-1+…+axx+an+1,若F(1)=0,则F(x)中一定含因式(x-1),若F(x)中不含因式(x-1),又如何寻求f(x)是否含因式(x2+x+1)?事实上,若F(x)含因式(x2+x+1),而不含因式(x-1)时,令x-1≠0,则有F(x)(x-1)=(x3-1)g(x).显然,当x3=1时,F(x)(x-1)=0,故有F(x)=0,而x3=1可转化为x3-1=0即(x-1)(x2+x+1).若x≠1,则必有x2+x+1=0.所以,把x3=1代入F(x)中,一定有F(x)=k(x2+x+1).若不然F(x)≠0.由此,很容易识别F(x)中是否有因式(x2+x+1)其方法是:  相似文献   

16.
一、直接法例1已知f(x)=x2(x≥0)x(x<0),g(x)=x(x≥0)-x2(x<0),则x<0时,f[g(x)]为()(A)-x(B)-x2(C)x(D)x2解:当x<0时,g(x)=-x2<0,所以f[g(x)]=g(x)=-x2,选(B).求复合函数的解析式,先求内层函数,再求外层函数,另外,分段函数要注意变量的范围.二、换元法例2已知f(1-cosx)=sin2x,求f(x).解:令1-cosx=t则cosx=1-t,-1≤1-t≤1,所以0≤t≤2.所以f(t)=1-(1-t)2=-t2+2t(0≤t≤2)所以f(x)=-x2+2x(0≤x≤2)三、配方法例3f(x-1x)=x2+x12.求f(x).解:f(x-1x)=x2+x12=(x-1x)2+2,所以f(x)=x2+2.四、待定系数法例4已知f(x)=3x-1,f[h(x)]=g(x)=2x+3,h(x)为x…  相似文献   

17.
根据一次函数的图象及单调性,容易推得如下结论成立:一次函数f(x)=kx+b(k≠0),当x∈[m,n]时,1f(x)>0f(m)>0且f(n)>0;2f(x)<0f(m)<0且f(n)<0;3f(x)=0f(m)f(n)≤0.有些数学问题,可根据题意转化为关于某一变量的一次函数,应用上述结论求解,简捷、明了.例1对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求实数x的取值范围.解:不等式x2+px>4x+p-3即(x-1)p+x2-4x+3>0令f(p)=(x-1)p+x2-4x+3视它为关于p的一次函数,显然x≠1.由于0≤p≤4,所以由f(p)>0恒成立可得f(0)>0且f(4)>0,即f(0)=x2-4x+3>0f(4)=4(x-1)+x2-4x+3>0.解之得x<-1或x>3.例2…  相似文献   

18.
由函数单调性的定义容易知道:(1)若函数f(x)在区间I上单调递增,且x1,x2∈I,则f(x1)x2;(3)若函数f(x)在区间I上单调,且x1,x2∈I,则f(x1)=f(x2)x1=x2;根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用的技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.下面举例说明这一思想在解题中的若干应用.一、求值例1设x,y为实数,且满足(x-1)3+1997(x-1)=-1(y-1)3+1997(y-1)=1,则x+y=.解:由已知条件,可得:(x-1)3+1997(x…  相似文献   

19.
赵坚 《当代电大》2003,(11):5-8
1 填空题1)设 f(x- 1) =x2 - 2x ,则 f(x) =。解  [解法一 ] 设t=x- 1则 x=t+1得 f(t) =(t +1) 2 - 2 (t+1) =t2 - 1故 f(x) =x2 - 1[解法二 ] 因为 :f(x- 1) =x2 - 2x=x2 - 2x+1- 1=(x- 1) 2 - 1所以 f(x) =x2 - 12 )函数 f(x) =1ln(x- 2 ) +5 -x 的定义域是。解 对函数的第一项 ,要求x - 2 >0且ln(x - 2 ) ≠ 0 ,即x >2且x≠ 3。对函数的第二项 ,要求 5 -x≥ 0 ,即x≤ 5。取公共部分 ,得函数定义域为 (2 ,3)∪ (3,5 ]。3)设 f(x) =ax +a-x2 ,则函数的图形关于对称。解 f(x)的定义域为 (-∞ ,+∞ ) ,且有 :f(-x) =a-x+a-( -x)2 =a…  相似文献   

20.
第13届“希望杯”全国数学邀请赛高中一年级培训题第56题综合了考查函数、反函数、方程等知识,并且可以应用数形结合思想。是一道很有思维空间的好题,试题如下:题已知函数y=f(x)有反函数y=f-1(x),方程f(x)+x-2002=0有唯一实根α,方程f-1(x)+x-2002=0有唯一实根β,则α+β=___.解 (数形结合法)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号