首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目:已知x2 y2=16,求x y的最大值和最小值.(人民教育出版社高中数学第二册(上)复习参考题七B组第6题) 求代数式的最大值和最小值,关键是构造出关于该代数式的不等式.  相似文献   

2.
正一、展示不同解题方法,体现合作学习的魅力一次考试,同一道题目,可能出现多种不同解法,在试卷讲评中,让学生把各种不同解法充分展示出来,对开拓学生思维,有着很好的引导作用.考题:已知x2+y2=100,求x+y的最值.此题不难,但解决方法有多种,考试过后,同学们给出了多种不同解答.学生1:换元法,设x=10cosθ,y=10sinθ则x+y=10(cosθ+sinθ)=槡10 2 sin(θ+24),显然,最大值是槡10 2,最小值是-槡10 2.学生2:数形结合法,设t=x+y,则y=-x+t.转化为求直线y=-x+t截距的最大最小值,利用圆心到  相似文献   

3.
本文以部分高中数学竞赛题为例,谈谈三角换元法在解最大值和最小值问题中的应用,供高中师生教学时参考. 1 解最大值问题 例1 (2013年全国高中数学联赛辽宁省预赛试题)设实数x,y满足17(x2+y2)-30xy-16 =0,求 f(x,y) =√16x2 +4y2-16xy-12x+6y+ 9的最大值.  相似文献   

4.
已知sin xcos y=1/2,求cos xsin y的最大值与最小值.错解1:令cos xsin y=t则cos xsin y+sin xcos y=t+1/2,即sin(x+y)=t+1/2.由|sin(x+y)|≤1,得|t+1/21|≤1,解得  相似文献   

5.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

6.
三角代换法是代数式化简、变形和求值中常用的方法之一 .在使用此方法求函数的值域或最值时 ,容易出现错误 .请先看全国著名一线教师编著的《中学数理化一题多解系列丛书——高中数学卷》(东北师范大学出版社出版 )上一个题目及其解答 :求函数 y =x 1 - x2的最大、最小值 .解 :解法 1 :把函数变形为 y - x =1 - x2 1即 (y - x) 2 =1 - x2 22 x2 - 2 yx y2 - 1 =0 ,方程有实根Δ =4 y2 - 8(y2 - 1 ) =8- 4y2≥ 0y2≤ 2 ,所以 - 2≤ y≤ 2函数的最大值为 ymax =2 ,最小值 ymin =- 2 .解法 2 :设 x =sinθ (- π2 ≤θ≤ π2 ) ,则y =sinθ…  相似文献   

7.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

8.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

9.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题.这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一、配方法例1(2005年全国初中数学联赛武汉CASIO杯选拔赛)2x2+4xy+5y2-4x+2y-5可取得的最小值为.解:原式=(x+2y)2+(x-2)2+(y+1)2·27·-10.由此可知,当x=2,y=-1时,有最小值-10.二、设参数法例2(《中等数学》奥林匹克训练题)已知实数x、y满足x3+y3=2.则x+y的最大值为.解:设x+y=k,易知k>0.由x3+y3=2,得(x+y)(x2-xy+y2)=2.从而,xy=13(k2-k2).由…  相似文献   

10.
<正>在各类初中数学考试中,常常会遇到求最值问题.其中某些求代数式最值问题,若能根据已知条件,构造一元二次方程,利用根的判别式求解不失为一种有效的方法.下面举例说明,供参考.例1已知x,y都是实数,并且适合方程x2-xy+y2-xy+y2-2x-2y+3=0,求x+y的最大值与最小值.  相似文献   

11.
本文以 2 0 0 4年各地高考三角题为例 ,就题型与策略谈几点拙见 ,以供参考 .1.用公式asinα+bcosα =a2 +b2 sin(α+φ)化为一个角的某个三角函数 .【例 1】 求函数y=sin4 x+2 3sinxcosx-cos4 x的最小正周期和最小值 ,并写出该函数在 [0 ,π]上的递增区间 .解 :y =sin4 x+2 3sinxcosx-cos4 x=3sin2x-cos2x =2sin( 2x-π6)故此函数的周期为π ,最小值为 -2 ,[0 ,π3 ]为递增区间 ,[23 π ,π]为递增区间 .练习 1:求函数y=sinx -12 cosx(x∈R)的最大值 .2 .通过化简转化为以tanα为主元的代数式 .【例 2】 已知tan(α+π4) =2 ,求 12sinαc…  相似文献   

12.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

13.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

14.
研究数形结合的思想方法时 ,有这样一道求函数最值的例题 :求函数 y =x2 -6x+ 13 -x2 -2x+ 2 的最大值 .分析 若直接从数的角度考虑 ,较为困难 .注意到函数表达式可变形为 :y = (x-3 ) 2 + ( 0 -2 ) 2 -(x-1) 2 + ( 0 -1) 2 ,从形的角度看 ,函数值y可看作是平面直角坐标系中x轴上的动点M (x ,0 )到两定点A(3 ,2 )、B(1,1)距离之差 ,即 y =|MA|-|MB| (如图 1) .由平几知识 ,当M恰好是线段AB的延长线与x轴的定点 (-1,0 )时 ,y达到最大 ,最大值为|AB| =5 .因而题中所求的最大值为 5 .有同学提问 :这个函数是否存在最小值 ?如果存在…  相似文献   

15.
下面以具体的问题来体现函数单调性的妙用,供大家欣赏.一、考虑函数最值【例1】 求函数f(x)=x3-3x2+5x+1,x∈[-1,1]的最值.分析:对于这个问题许多学生感到为难,但如果从单调性入手则会充分显现其优越性.由f(x)=x3-3x2+5x+1的特点易知f(x)可变形成f(x)=(x-1)3+2(x-1)+4,则可设t=x-1,则函数f(x)可变成y=t3+2t+4,t∈[-2,0],所以要求原函数的最值只要求y=t3+2t+4,t∈[-2,0]的最值,易证y=t3+2t+4,t∈[-2,0]是单调递增函数,所以当t=-2时此函数有最小值为-8,当t=0时此函数有最大值为4,从而当x=-1时,原函数有最小值为-8,当x=1时,原函数有最大值为4.…  相似文献   

16.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

17.
申亚玲 《考试周刊》2014,(59):54-55
<正>苏教版(必修5)第97页,有这样一题:已知正数x,y满足x+2y=1,求1x+1y的最小值.本题命题的目的是运用基本不等式求最小值,但怎样运用呢?在教学中,学生大都易直接应用,而导致这样的错解:因为x>0,y>0,x+2y=1,所以x+2y≥2 2xy……①,所以xy≤18,  相似文献   

18.
一般地说 ,一次函数y =kx +b不存在最大值或最小值 .但是 ,当给出了自变量x的取值范围这一特殊条件后 ,函数值y就可能有最值 .例如 ,一次函数y =kx+b ,x1≤x≤x2 .若k >0 ,如图 1 ,则y值随x的增大而增大 ,当x =x1时 ,y有最小值y1,当x =x2 时 ,y有最大值y2 ;若k <0 ,如图 2 ,则y值随x的增大而减小 ,当x =x1时 ,y有最大值y1,当x =x2 时 ,y有最小值y2 .图 1图 2例 1 已知关于x的方程x2 - 2x +k =0的实数根x1、x2 ,且y =x3 1+x3 2 .试问 :y是否有最大值或最小值 ?若有 ,试求出其值 ;若没有 ,请说明理由 .( 1 999,天津市中考题 )解 :由根与系数…  相似文献   

19.
最值问题是一个古老而又崭新的课题,它渗透到代数、几何、三角、不等式等各个学科领域,随着数学内容的不断深化,解最值问题的方法也愈加丰富.这类题不仅涉及面广,而且蕴涵着丰富的数学思想和方法.本文介绍一些常见的方法.1 配方法将代数式配成平方和的形式,利用平方是非负数这一特点而求其最值,但应注意能否同时取得最值.例1 求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.分析:对于多元函数,可选定其中一个作为主元来进行配方.解:原式=5x2+6xy+3y2-30x-20y+46=5x2+(6y-30)x+3y2-20y+46=5[x2+6y-305x+(3y-155)2]-(3y-155)2+3y2-…  相似文献   

20.
在最值问题中 ,常常会遇到最大值和最小值相互嵌套在一起的一种问题 ,我们称之为复合最值问题 .本文就此类问题的解法作一介绍 .1 利用分类讨论例 1 已知函数f(x) =-x2 + 2tx -t,x∈ [- 1 ,1 ].记f(x)的最大值为M .求M的最小值 .解 :因f(x) =-x2 + 2tx-t=- (x-t) 2 +t2 -t,又 - 1≤x≤ 1 ,则当t≤ - 1时 ,M =f( - 1 ) =- 3t- 1 ;当 - 1 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号