首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
求二次函数解析式既是初中数学的重点, 也是中考中的热点,因此,学会并掌握求二次函数解析式的方法是必要的.二次函数的解析式常见的有: 一般式:y=ax2+bx+c(a≠0) 顶点式:y=a(x-h)2+k(a≠0),(h,k) 是抛物线顶点.两根式:y=a(x-x1)(x-x2)(a≠0) x1和x2是抛物线与x轴两个交点的横坐标; 确定二次函数的解析式,实质上是要确定上述式子中的三个常数,因此需要三个独立的已知条件建立三个方程组成方程组,才能求解.下面以中考试题为例,供同学们参考.  相似文献   

2.
常见二次函数一般形式是y=ax~2+bx+c经配方后有顶点式是或y=a(x+h)~2+k抛物线的顶点是或(-h,k),对称轴是x=-b/2a或x=-h,二次函数另一种形式是乘积式y=a(x-x_1)(x-x_2),在解题时如能灵活选设所求二次函数解析式,将使解题过程大为简便。下面举一例予以说明之: 已知二次函数的图象的顶点坐标(3,-2)对称轴与y轴平行,并且图象与x轴的两个交点叫的距离为4,求二次函数解析式。  相似文献   

3.
苏科版九年级(下)数学教材在讲解二次函数y=ax2+bx+c(a≠0)的性质时,是将二次函数的解析式由简单的y=ax2(a≠0)(顶点在原点)逐渐过渡到y=ax2+c(a≠0)(顶点在y轴)、y=a(x-h)2(a≠0)(顶点在x轴)、y=a(x-h)2+k(a≠0)(顶点式),再到一般式y=ax2+bx+c(a≠0).而前四种形式的二次函数图象之间的联系是通过对应的抛物线的平移来实现的:  相似文献   

4.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

5.
同学们知道,抛物线y=a(x-x_1)(x-x_2)(a≠0)必与x轴交于(x_1,0)、(x_2,0)两点。反之,当抛物线交x轴于(x_1,0)、  相似文献   

6.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

7.
我们知道,如果抛物线y=ax~2+bx+c与x轴有两个交点,横坐标分别是x_1和x_2,则这个抛物线可写成交点式y=a(x…x_1)(x-x_2)。本文提供几个利用交点式求二次函数的解析式的例题,供同学们学习时参考。  相似文献   

8.
二次函数解析式的确定主要有三种形式:一般式y=ax2 bx c;顶点式y=a(x-h)2 k,(h,k)是抛物线的顶点坐标;两根式y=a(x-x1)(x-x2),x1、x2是抛物线与x轴交于两点的横坐标。在解题的过程中,若能够根据题设选择适当的形式求二次  相似文献   

9.
二次函数解析式的确定主要有三种形式:一般式y=ax2+bxc;顶点式y=a (x-h)2+k,(h,k)是抛物线的顶点坐标;两根式y=(x-x1)(x-x2),x1、x2是抛物线与x 轴交于两点的横坐标。在解题的过程中,若能够根据题设选择适当的形式求二次函数的解析式,就会显得简捷、直观、明了。本文拟就二次函数解析式的求解策略进行归纳,供读者参考。  相似文献   

10.
第1课时二次函数的概念和性质 1.二次函数的概念 一般地,称y=ax^2+bx+c(a≠0,a,b,c为常数)表示的函数为二次函数. 2.二次函数的图象和性质 (1)二次函数的顶点式为y=a(x-h)^2+k(a≠0),它的图象是对称轴平行于y轴的抛物线.  相似文献   

11.
内容概述二次函数的解析式由条件确定二次函数的解析式需要三个独立的条件,一般有如下三种特定形式:1.一般式y=ax2+bx+c(a≠0)2.顶点式y=a(x-m)2+h(a≠0)3.分解式y=a(x-x1)(x-x2)(a≠0)二次函数的最值对二次函数f(x)=ax2+bx+c(a≠0)若自变量x为任意实数,其最值情况为:当a>0,x=-b/2a,fmin=4ac-b2/4a;当a<0,x=-b/2a,fmax=4ac-b2/4a.若自变量x在范围x1≤x≤x2上取值时,其最值情况为:对a>0,有如下结论:  相似文献   

12.
二次函数y =ax2 bx c(a≠0 )的顶点式y =a(x b2a) 2 -Δ4a(Δ=b2 -4ac)较为优越,因为顶点式能够体现出二次函数y =ax2 bx c(a≠0 )图象的特征:( 1 )开口方向(由a确定:a >0 ,开口向上;a<0 ,开口向下) ;( 2 )对称轴方程(x b2a=0 ) ;( 3 )顶点位置,即最高点或最低点的位置(点的横坐标x =-b2a,点的纵坐标y =-Δ4a) .由顶点式也能确定出二次函数y =ax2 bx c(a≠0 )的最值(当a >0时有最小值y =-Δ4a;当a <0时有最大值y =-Δ4a) .如果已知二次函数的对称轴,或顶点位置,或最值,采用顶点式y =a(x h) 2 k确定二次函数的解析式较简捷.( 1 )…  相似文献   

13.
<正>求二次函数平移和对称后的解析式是中考热点问题.对于二次函数平移,我们熟知,先将抛物线通过配方化成顶点式y=a(xh)2+k(a≠0),再根据平移规律:左加右减,上加下减,可求得其解析式.显然抛物线无论作何种对称变换,其形状没有发生变化,即|a|不变.因此要求抛物线经过对称变换后的解析式,我们可先确定原抛物线的顶点坐标及开口方向,再根据两抛物线顶点对称的规律,来确定二次函数的三个参数a,h,k变化规律;我们还可以根据坐标对称的特征,归纳出二次函数的一般式y=ax2+bx+c(a≠0)对称后的解析式及a,b,c的变化规律.现分类阐释抛物线经不同对称变换后的解析式的变化规律,供大家参考.  相似文献   

14.
<正>直线与圆锥曲线的位置关系类高考试题,基本与一元二次函数及韦达定理形影不离,这样就使得问题解决具有模式化.笔者时常在思考,能否回避韦达定理呢?在复习二次函数形式时,二次函数的零点式f(x)=a(x-x1)(x-x_2)(a≠0,x_1,x_2为函数y=f(x)与x轴交点的横坐标,亦是方程f(x)=0的两个实数根)给笔者以启发.以下就是笔者运用零点  相似文献   

15.
二次函数的定义给出了二次函数的表达式——一般式:y=ax2+bx+c(a≠0),用配方法可以将一般式化成另一种形式——顶点式:y=a(x一h)2十k(a≠0),我们正是用顶点式详细地研究了二次函数的图象和性质.如果二次函数y=ax2+bx+c的图象经过(x1,m)  相似文献   

16.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

17.
求二次函数解析式是《函数及其图象》一章的重点和难点,也是近年中考命题的重要内容.通过求解析式可将函数、数形结合等数学思想融为一体,以提高学生运用一些数学方法解决实际问题的能力.求二次函数解析式的方法,由已知条件而定.一、已知二次函数图象上三点的坐标一般情况下,设它的解析式为y=ax2+bx+c(a≠0)(一般式),将三点坐标代入,解三元一次方程组求出a、b、c即可.例1.已知二次函数的图象经过(3,2),(-1,-1),(1,3)三点,求这个二次函数的解析式.解:(略).二、已知抛物线y=ax2+bx+c(a≠0)的顶点坐标或对称轴一般选用顶点式y=a(x-h)2+k较为简…  相似文献   

18.
我们知道,抛物线y=a(x-x1)(x-x2)(a≠0)必与x轴交于(x1,0)和(x2,0)两点.反之,若抛物线与x轴的两个交点的坐标分别为(x1,0)和(x2,0),则可设所求抛物线的解析式为y=a(x-x1)(x-x2)(a≠0),然后将图象上其它任意一点的坐标代入即可确定其解析式.一、"交点"为抛物线与x轴的交点例1已知抛物线经过原点及点(-1/2,-1/4),且抛物线与x轴的另一交点到原点的距离为1,  相似文献   

19.
谈起二次函数的解析式,许多同学都能想到一般式y=ax^2+bx+c(a≠0)和顶点式y=a(x-h)^2+k(a≠0),却往往忽视了另外一种重要的形式——二次函数的零点式  相似文献   

20.
众所周知,抛物线y=ax~2 bx c(a≠0)与x轴两交点(x_l,0)、(x_2,0)间的距离为 d=|x_l-x_2| =((x_l x_2)~2-4x_lx_2)~(1/2) (1) =(b~2-4ac)~(1/2)/|a|。 还有一个不常使用的公式就是d=2(-k/a)~(1/2)。其中,k是指抛物线的顶点式y=a(x-h)~2 k(a≠0)中的k,k=(4ac-b~2)/4a。推导过程如下:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号