首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]提出用待定系数法求sum from j=0 to n (j~K C_n~5)的表达式,但该法不太理想,本文介绍另外两种方法,供大家参考。一、导数法展开(1+x)~n,我们有恒等式 C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n=(1+x)~n (1) 在(1)式中对x求导得 C_n~1+2C_n~2x+3C_n~3x~2+…+nC_n~nx~(n-1)=n·(1+x)~(n-1) (2) 在(2)式两端乘以x,然后再对x求导得  相似文献   

2.
关于组合恒等式的证明方法大体可归纳为如下一些: 一、在二项展开式中直接代入特别值而得组合恒等式二项展开式为 C_n~0 C_n~1x C_n~2x~2 … C_n~nx~n=(1 x)~n,其中 C_n~k=(n(n-1)…(n-k 1))/(k!)=(n!)/((n-k)!k!),k≤n,且规定C_n~0=1。若令x=1得 C_n~0 C_n~1 C_n~2 … C_n~n=2~n.(1) 令x=-1得 C_n~0-C_n~1 C_n~2-… (-1)~nC_n~n=0,(2)或 C_n~0 C_n~2 …=C_n~1 C_n~3 … *) (3) *)本  相似文献   

3.
在组合数恒等式中,有一类可以通过对等式x~α(1+x~β)~n=sum form r=0 to n(C_n~rx~(a+rB)),(1+x)~n=sum form r=0 to n(C_n~rx~r)求导或积分而得,方法简便,且能揭示其数量之间的一般关系。兹举例如下: 1、[(1+x)~n]~′=(C_n~o+C_n~1X+C_n~2X~2+C_n~3X~4+…+C_n~rX~r+…+C_n~nX~n)′,  相似文献   

4.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

5.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

6.
由二项式定理,对(x+a)~1,(x+a)~2,(x+a)~3,(x+a)~4,(x+a)~5,…,(x+a)~(a-1),(x+a)~a,…各个展开式里各项的系数(以下简称为组合系数),可以列表如下: C_0~0 C_1~0,C_1~1 C_2~0,C_2~1,C_2~2 C_3~0,C_3~1,C_3~2,C_3~8 C_4~0,C_4~1,C_4~2,C_4~3,C_4~4 C_5~0,C_5~1,C_5~2,C_5~3,C_5~4,C_5~5 …… C_(n-1)~0,C_(n-1)~1,…,C_(n-1)~1,… C_(n-1)~(n-2),C_(n-1)~(n-1) C_n~0,C_n~1,…,C_n~1,…,C_n~(n-1),C_n~n ……  相似文献   

7.
让我们先看下面两个例题: 例1 求证C_(n-1)~m C_(n-2)~m C_(n-3)~m… C_(m 1)~m C_m~m=C_n~(m 1) 证明:由等比数列求和公式知(1 x)~(n-1) (1 x)~(n-2) (1 x)~(n-3) … (1 x)~(m 1) (1 x)~m=((1 x)~n-(1 x)~m)/x上式左边x~m项的系数是 C_(n-1)~m C_(n-2)~m C_(n-3)~m … C_(n 1)~m C_m~m,上式右边的分子中,x~(m 1)项的系数是G_n~(m 1),应当相等,故等式成立。例2 证明: C_n~1 2C_n~2 3C_n~3 … C_n~n=n2~(n-1)。证明:将等式  相似文献   

8.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

9.
所谓“赋值法”,是指对式中某些变量任意赋以恰当的数值或代数式后,用以解题的一种方法。这种方法在教材中已经出现。例如C_n~0+C_n~1+C_n~2+…C_n~n=2~n的性质,就是从(a+b)~n的展开式中令a=1 b=1得来。本文准备再补充几个例子,作一些粗浅的探讨。 (一) 用于因式分解例1.分解因式x~4+x~3+x~2+2 解:设x~4+x~3+x~2+2≡(x~2+Ax+1)(x~2+Bx+2) 令x=i,整理得2-i=-AB+Ai  相似文献   

10.
一九八五年全国高等学校招生统一考试数学(理工农医类)第二(4)题是这样一道题:设(3x-1)~6=a_6x~6 a_5x~5 a_x~4 a_3x~3 a_2x~2 a_1x a_0,求a_6 a_5 a_4 a_3 a_2 a_1 a_0的值。在阅卷中发现不少考生在草稿上是通过二项展开公式去求的。这样即便解对,亦非良法。事实上,我们只要对试题稍作分析便知,若在题设中令x=1,则其右边便是所要求值的代数式,而左边为常数2~6,即为所求。这种思想方法其实也正是教材所要求掌握的。高中代数第三册p75例1、例2在证明恒等式C_n~0 C_n~1 C_n~2 … C_n~n=2~n及C_n~0 C_n~2 C_n~4 …=C_n~1 C_n~3 C_n~5 …=2~(n-1)时,就是由对二项展开式中的a、b巧赋特殊值得到的。类似地,  相似文献   

11.
导数是高中数学新教材的内容,它作为解题有力的工具使某些问题的求解变得简便.本文选取2004年全国的高考试题,举例介绍应用导数解答高考题的常见类型,供大家参考.  一、求曲线的切线例1  曲线 y=x3 -3x2 +1 在点(1,-1)处的切线方程为(  ).A.y=3x-4    B.y=-3x+2C.y=-4x+3 D.y=4x-5解析  由函数 f(x)=x3 -3x2 +1 导数为f′(x)=3x2-6x,f′(1)=-3,因此得(1,-1)处的切线方程为:y-(-1)=-3(x-1),即y=-3x+2.二、研究函数的单调性例2  已知a∈R,求函数 f(x)=x2eax 的单调区间.解析  函数 f(x)的导数 f′(x)= 2xeax +ax2e…  相似文献   

12.
(a+b)~n展开式的二项式系数C_n~0、C_n~1、C_n~2…C_n~n从左至右先逐渐递增到最大值C_n~(n/2)(n为偶数)[或C_n~(n-1/2)、C_n~(n+1/2)(n为奇数)]时再逐渐减小,且有C_n~r=C_n~(n-r)(r=0,1,2,…n)。利用这个性质可以解组合不  相似文献   

13.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

14.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

15.
本文给出组合恒等式C_n~1+2C_N~2+3C_n~3+…+nC_n~n=n·2~(n-1)的六种证法.这个组合恒等式在证明其它组合恒等式和计算组合数的和时常常有用.  相似文献   

16.
高中数学第三册第160页题23(1)是一道在证明方法上很有启发性的复习题。这道题启示我们利用(1+x)~n·(1+x)~n=(1+x)~(2n)来证明组合恒等式(C_n~0)~2+(C_n~1)~2+…+(C_n~n)~2=(2n)!/n!·n!①事实上,恒等多项式  相似文献   

17.
现行高中数学课本里有这样一道习题:证明(C_n~0)~2+(C_n~1)~2+…+(C_n~n)~2=(2n)!/n!·n!。教材提示利用(1+x)~n·(1+x)~n=(1+x)~(2n),比较等式两边的展开式中含x~n项的二项式系数。除此之外,还可从组合意义  相似文献   

18.
教材(指六年制重点中学《代数》第三册)P83第24(2)题:在(1+x)~3+(1+x)~4+…+(1+x)~(n+2)的展开式中,求含x~2项的系数。同学们解到C_3~2+C_4~2+…+C_n~2+2这一结果就认为做完了。我引导同学联想已做过  相似文献   

19.
正本文试图从导数命题的类型之一,探讨解决导数问题的思想方法,主要从"高等数学情景的初等化"谈起。一、泰勒展开式原型泰勒展开式很好地把初等函数形式与超越函数联系起来,而找到初等方法与超越函数的联系,往往是导数命题的一种形式。几个常见的展示如下:(1)e x=1+x+x2/2+…(2)ln(1+x)=x-x2/2+x3/6+…  相似文献   

20.
导数作为一种工具,在解决数学问题时应用极为方便,尤其是利用导数可以求函数的单调性、极值、最值以及曲线的切线.在学习的过程中,概念不清导致导数应用错误的情形时常发生.本文拟对导数应用中常见的误区进行简单剖析.一、对极值的条件理解不清例1函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求a,b.误解由题意知f'(x)=3x2+2ax+b,且f'(1)=0,f(1)=10,即2a+b+3=0,a2+a+b+1=10.解得ab==4-,11,或ab==-33,.剖析本题误把f(x0)为极值的必要条件当成充分条件.要保证f(x0)为极值,还需验证f'(x)在x0两侧附近符号是否相异.当a=4,b=-11时,f'(x)=(3x+11)(x-1)在…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号