首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设f1(x)和f2(x)都是集合M上的周期函数,T1、T2分别是它们的一个周期,若T1/T2∈Q,则它们的和差与积商也是M上的周期函数,T1与T2的公倍数为它们的一个周期.  相似文献   

2.
关于周期函数f(x)的倒数函数1/(f(x))的周期性,文[1]是这样叙述的:“若f(x)是集M上的周期函数,则1/(f(x))是集{x|f(x)≠0,x∈M}上的周期函数。若f(x)有最小正周期T则1/(f(x))也有最小正周期T。”该定理的后半段是不正确的。文[2)曾给出一反例如下。  相似文献   

3.
本文讨论周期函数的几个判定定理。 定理1 设y=f(x)是数集M上的周期函数,则 (1)kf(x) c(k,c为常数)是M上的周期函数; (2)|f(x)|是M上的周期函数; (3)1/f(x)是{x|f(x)≠0,x∈M}上的周期函数;  相似文献   

4.
求证:如果f(x)与g(x)是定义在同一集合M上的周期函数,周期分别是T_1与T_2,且T_1/T_2=a,而a是有理数,则它们的和、差与积也是M上的周期函数,且T_1与T_2的公倍数为其一个周期。证明:我们仅证和的情形。∵T_1与T_2分别是f(x)与g(x)的周期,且T_2/T_1是有理数,设T_1与T_2的最小公倍数为T  相似文献   

5.
设f(x)是定义在数集M上的函数,若存在一个常数T(T≠O),当任何x∈M时,有x±T∈M,且有f(x+T)=f(x),那么称f(x)为数集M上的周期函数。T称为这个函数的周期。如果这样的常数T不存在,则称f(x)为数集M上的非周期函数,  相似文献   

6.
文(1)给出一元函数对称性的二个定理,判定函数图象的对称性,本文根据上述定理,给出周期函数的三个充分不必要条件,不揣浅陋,请予指教.我们知道,对于函数y=f(x),若存在非零常数t,使f(x)=f(x t)对于任意x恒成立,则f(x)是周期函数,t为f(x)的周期.定理1:若函数y=f(x)的图象有两条与Y轴平行的对称轴,则函数y=f(x)是周期函数.证明:设函数y=f(x)的图象的两条对称轴方程分别是x=a,x=b(a≠b),则有f(x)=f(2a-x),f(x)=f(2b-x),∴f(x)=f(2(b-a) x),故f(x)是周期函数且周期为2(b-a).定理2:若函数y=f(x)的图象在平行于X轴的直线上有两个对称中心,则f(x)是周期函数.  相似文献   

7.
判别一个函数是不是周期函数,求周期函数的周期,以及证明最小正周期等问题,一般都是利用定义解决的。若函数f(x)为周期函数,必有等式 f(x+T)=f(x)成立。这里要注意:(1)T必须是常数,且不为零。(2)上式必须对于定义域内的所有x值都成立。要判别函数f(x)是周期函数或者非周期函数,以及求周期函数的周期只要列出等式f(x+  相似文献   

8.
对于三角函数中的周期性内容的学习与把握 ,笔者认为应从如下四个方面进行 .1 正确理解周期函数的概念全日制高中数学第一册 (下 ) ,2 0 0 0年人教版第5 1页 ,给出了周期函数的定义 :“一般地 ,对于函数f(x) ,如果存在一个非零常数T ,使得当x取定义域内的每一个值时 ,都有 f(x+T) =f(x) ,那么函数f(x)就叫做周期函数 ,非零常数T叫做这个函数的周期 .”对于一个周期函数 f(x) ,如果在它所有的周期中存在一个最小的正数 ,那么这个最小正数就叫做f(x)的最小正周期 .对周期函数这一概念的理解 ,应注意以下几点 :(1)若 f(x)是周期函数 ,则其定…  相似文献   

9.
<正> 命题1 如果对于函数f(x)的定义域内任意一个x,都有f(x+T)=f(x-T)那么f(x)是周期函数,2T为它的一个周期证∵f(x+2T)=f[(x+T)+T] =f[(x=T)-T]=f(x)∴f(x)为周期函数,并且2T是它的一个周期.命题2 如果对于函数f(x)的定义域内任意一个x,都有  相似文献   

10.
1 关于两个点都对称的周期函数 结论1 定义在R上的函数f(x)的图象关于两点(T1,k),(T2,k)都对称(T1≠T2),则f(x)是以2│T2-T1│为正周期的周期函数.  相似文献   

11.
笔者最近对递推函数的周期作了些探究,得到了一组十分优美的结论,且在国内外数学竞赛中有着广泛的用途,在此给出来与读者共赏.结论1若函数f(x)(x∈R)满足f(x m)=11-f(x),则函数f(x)是周期为3m的周期函数.证明因为f(x m)=1-1f(x),①用x m代替①式中的x,则有f(x 2m)=1-f(1x m).②①式代入②式化简,得f(x 2m)=f(fx()x)-1.③用x m代替③式中的x,则有f(x 3m)=f(fx( x mm))-1.④①式代入④式化简,得f(x 3m)=f(x).所以函数f(x)是周期为3m的周期函数.结论2若函数f(x)(x∈R)满足f(x m)=1 f(x)1-f(x),则函数f(x)是周期为4m的周期函数.证明因为f(x m)=…  相似文献   

12.
二、有关定理下面介绍的一系列定理,可以帮助判定函数的周期性或求出最小正周期。定理1 设f(x)、g(x)皆为定义在实数集R上的周期函数,T_1与T_2分别为f(x)与g(x)的正周期,当T_1/T_2等于有理数时,则f(x)±g(x),f(x)·g(x)均为定义在R上的周期函数,且T_1与T_2的公倍数是它们的周期。(未必是最小正周期) 证设T_1/T_2=p/q(p与q皆为正整数)令T=qT_1=pT_2则f(x±T)±g(x±T)=f(x±qT_1)±g(x±pT_2)=f(x)±g(x).所以f(x)±g(x)是周期函数,T为周期。对于f(x)·g(x),同理可证是以T为周期的函数。注(1)实数集R可用上、下无界数集E代替;(2)对于有限个函数,定理仍然  相似文献   

13.
基本初等函数的周期性,我们比较熟悉.而由基本初等函数复合而成的初等函数,它的周期性的判定,则麻烦多了.本文试图通过几个例子和结论,谈谈非周期函数的判定. 一、从周期函数的定义域来判定由周期函数的定义知,周期函数的定义战必须是没有上界或者没有下界的,所以如果定义域有界,那么马上就可以断定此函数是非周期函数.如函数f(x)=sinx~(1/2)+cos(1-x)~(1/2)的定义域[0,1]是有界的,所以f(x)不是周期函数. 例1 求证函数f(x)=sin 1/x不是周期函数. 证明:∵f(x)的定义域是(-∞,0)∪(0,+∞), ∴如果f(z)是周期为T的函数,那么对任何x≠0,都有f(x+T)=f(x)成立,令x=-T≠0,得  相似文献   

14.
关于周期函数,我们有以下熟知的定义: 设f(x)是定义在R上的实函数.若存在非零数l,使得对Ax有f(x l)=f(x),则称f(x)为周期函数,l为一个周期。周知,一个周期函数未必有最小正周期,因此有必要探求周期函数存在最小正周  相似文献   

15.
我们知道,周期函数的导数仍为周期函数,且周期不变。但是,周期函数的不定积分,或者其原函数不一定是周期函数。例如: f(x)=sin~2x,周期T=π,其原函数 F(x)=∫sin~2xdx=(x/2)-(1/4)sin2x c不是周期函数。  相似文献   

16.
怎样确定可化为f(x)=Asinωx,f(x)=acosωx,f(x)=Atgωx,f(x)=Actgωx(其中A≠0,ω>0,x∈M R)的函数的周期,是学生们比较困惑的问题,对此笔者认为由周期函数的定义确定这类函数的周期,是值得重视的方法。 由周期函数定义域确定这类函数的周期,即根据现行教材中周期函数的定义“若存在非零常数T,使f(x T)=f(x)对定义域内的任意实数x都成立,则称f(x)是以T为周期的函数”中,以T为周期的函数f(x)的定义域M必定满足:“对任意的k∈Z,x kT与x同时在或同时不在M内,并且具有相同的形式”这一含义,布列含T的方程并求出T。 下面通过具体的例子说明。  相似文献   

17.
本刊92年第五期刊登了一篇题为“周期函数与其导函数的周期”的文章,该文证明了下述定理。定理非常值周期函数f(x)在R上有定义且连续,而f′(x)存在且可积,则f′(x)也为周期函数,并且f(x)与f′(x)有相同的周期。并举下例说明其应用。例设f(x)=x-2k,(2k≤r<2k+1) -x+2(k+1),k∈2 (2k+1≤x<2k+2) 则f(x)与f′(x)有相同的周期2。(见原文例3)。显然,上例中的f′(x)当x=k时,不存在,故上述例不满足定理之条件,故用上述定理得出其结果不妥。易见,条件“f′(x)存在且可积”是相当强的,以致于象f(x)=tgx这样常用的初等函数  相似文献   

18.
一、周期函数 设函数f(x)的定义域为数集A 定义1,若存在T>0,对任意x∈A且x±T∈有: f(x±T)=f(x)则称函数f(x)为周期函数,T称为函数f(x)的周期。 定义2,对于周期函数y=f(x),如果存在一个最小正数Z,能使x取定义域中的任意值时,等式f(x±Z)=f(x)恒成立,那么这个最小的正周期Z称为函数f(x)的周期,亦称基本周期。 充分理解这两个定义的实质,必须弄清以下几个问题: (1)若要证明一个函数y=f(x)是周期函数,必须严格证明它符合定义的条件,即找到非零常数T,使f(x=T)=f(x)。  相似文献   

19.
有关周期函数的最小正周期的存在、求法的问题探讨不少。本文借助于周期函数的分析性质,确定其最小正周期。定理1 设f(x)为非常数的连续周期函数,T是其任一个正周期,若在[0,T]内函数最大值的点(最小值的点)的个数为m,那么,1)当m为质数时,其最小正周期T_0为T/M 或T;2)当m为合数时,其最小正周期T_0为T/K,其中K是m的某个约数。[注] 证明:因为f(x)是非常数连续函数,因此f(x)必定存有最小正周期,不妨令作T_0,而T是f(x)的任一个正同期,且在[0,T]  相似文献   

20.
性质一一个偶函数的图象若关于直线x=a(a≠0)对称,则这个函数为周期函数,且2a为它的周期. 证明设f(x)是偶函数,因其图象关于y轴对称,所以,如果点(x,y)在图象上,则点(-x,y)也在图象上,即f(-x)=f(x).又因其图象关于直线x=a对称,所以点(x+2a,y)也应在图象上,即f(2a+x)=f(-x),于是f(x)=f(-x)=f(x+2a)对于一切x都成立,f(x)为周期函数,2a为它的周期.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号