首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection‐based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin‐containing embalming fluids. This report details how additive manufacturing or three‐dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. Anat Sci Educ 7: 479–486. © 2014 American Association of Anatomists.  相似文献   

2.
The teaching of gross anatomy has, for centuries, relied on the dissection of human cadavers, and this formative experience is known to evoke strong emotional responses. The authors hypothesized that the phenomenon of cadaver naming is a coping mechanism used by medical students and that it correlates with other attitudes about dissection and body donation. The authors developed a 33‐question electronic survey to which 1,156 medical students at 12 medical schools in the United States voluntarily responded (November 2011–March 2012). They also surveyed course directors from each institution regarding their curricula and their observations of students' coping mechanisms. The majority of students (574, 67.8%) named their cadaver. Students most commonly cited the cadaver's age as the reason they chose a particular name for the cadaver. A minority of the students who did not name the cadaver reported finding the practice of naming disrespectful. Almost all students indicated that they would have liked to know more about their donor, particularly his or her medical history. Finally, students who knew the birth name of the donor used it less frequently than predicted. The authors found that the practice of naming cadavers is extremely prevalent among medical students and that inventive naming serves as a beneficial coping mechanism. The authors suggest that developing a method of providing students with more information about their cadaver while protecting the anonymity of the donor and family would be useful. Anat Sci Educ 7: 169–180. © 2013 American Association of Anatomists.  相似文献   

3.
Three-dimensional (3D) printing technology has become more affordable, accessible, and relevant in healthcare, however, the knowledge of transforming medical images to physical prints still requires some level of training. Anatomy educators can play a pivotal role in introducing learners to 3D printing due to the spatial context inherent to learning anatomy. To bridge this knowledge gap and decrease the intimidation associated with learning 3D printing technology, an elective was developed through a collaboration between the Department of Anatomy and the Makers Lab at the University of California, San Francisco. A self-directed digital resource was created for the elective to guide learners through the 3D printing workflow, which begins with a patient's computed tomography digital imaging and communication in medicine (DICOM) file to a physical 3D printed model. In addition to practicing the 3D printing workflow during the elective, a series of guest speakers presented on 3D printing applications they utilize in their clinical practice and/or research laboratories. Student evaluations indicated that their intimidation associated with 3D printing decreased, the clinical and research topics were directly applicable to their intended careers, and they enjoyed the autonomy associated with the elective format. The elective and the associated digital resource provided students with the foundational knowledge of 3D printing, including the ability to extract, edit, manipulate, and 3D print from DICOM files, making 3D printing more accessible. The aim of disseminating this work is to help other anatomy educators adopt this curriculum at their institution.  相似文献   

4.
New technological developments have frequently had major consequences for anatomy education, and have raised ethical queries for anatomy educators. The advent of three-dimensional (3D) printing of human material is showing considerable promise as an educational tool that fits alongside cadaveric dissection, plastination, computer simulation, and anatomical models and images. At first glance its ethical implications appear minimal, and yet the more extensive ethical implications around clinical bioprinting suggest that a cautious approach to 3D printing in the dissecting room is in order. Following an overview of early groundbreaking studies into 3D printing of prosections, organs, and archived fetal material, it has become clear that their origin, using donated bodies or 3D files available on the Internet, has ethical overtones. The dynamic presented by digital technology raises questions about the nature of the consent provided by the body donor, reasons for 3D printing, the extent to which it will be commercialized, and its comparative advantages over other available teaching resources. In exploring questions like these, the place of 3D printing within a hierarchical sequence of value is outlined. Discussion centers on the significance of local usage of prints, the challenges created by regarding 3D prints as disposable property, the importance of retaining the human side to anatomy, and the unacceptability of obtaining 3D-printed material from unclaimed bodies. It is concluded that the scientific tenor of 3D processes represents a move away from the human person, so that efforts are required to prevent them accentuating depersonalization and commodification.  相似文献   

5.
The practical aspect of human developmental biology education is often limited to the observation and use of animal models to illustrate developmental anatomy. This is due in part to the difficulty of accessing human embryonic and fetal specimens, and the sensitivity inherent to presenting these specimens as teaching materials. This report presents a new approach using three-dimensional (3D) printed replicas of actual human materials in practical classes, thus allowing for the inclusion of accurate examples of human developmental anatomy in the educational context. A series of 3D prints have been produced from digital data collected by computed tomography (CT) imaging of an archived series of preserved human embryonic and fetal specimens. The final versions of 3D prints have been generated in a range of single or multiple materials to illustrate the progression of human development, including the development of internal anatomy. Furthermore, multiple copies of each replica have been printed for large group teaching. In addition to the educational benefit of examining accurate 3D replicas, this approach lessens the potential for adverse student reaction (due to cultural background or personal experience) to observing actual human embryonic/fetal anatomical specimens, and reduces the potential of damage or loss of original specimens. This approach, in combination with ongoing improvements in the management and analysis of digital data and advances in scanning technology, has enormous potential to allow embryology students access to both local and international collections of human gestational material. Anat Sci Educ 00: 000–000. © 2018 American Association of Anatomists.  相似文献   

6.
It is essential for medical students to learn and comprehend human anatomy in three dimensions (3D). With this in mind, a new system was designed in order to integrate anatomical dissections with diagnostic computed tomography (CT) radiology. Cadavers were scanned by CT scanners, and students then consulted the postmortem CT images during cadaver dissection to gain a better understanding of 3D human anatomy and diagnostic radiology. Students used handheld digital imaging and communications in medicine viewers at the bench‐side (OsiriX on iPod touch or iPad), which enabled “pixel‐to‐tissue” direct comparisons of CT images and cadavers. Students had lectures and workshops on diagnostic radiology, and they completed study assignments where they discussed findings in the anatomy laboratory compared with CT radiology findings. This teaching method for gross and radiological anatomy was used beginning in 2009, and it yielded strongly positive student perspectives and significant improvements in radiology skills in later clinical courses. Anat Sci Educ 7: 438–449. © 2014 American Association of Anatomists.  相似文献   

7.
Transforming clinical imaging data for virtual reality learning objects   总被引:1,自引:0,他引:1  
Advances in anatomical informatics, three‐dimensional (3D) modeling, and virtual reality (VR) methods have made computer‐based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR “learning objects,” standardized interactive software modules for anatomical sciences education, from newer high‐resolution clinical imaging systems data. The key program is OsiriX, a free radiological image processing workstation software capable of directly reformatting and rendering volumetric 3D images. The transformed image arrays are then directly loaded into a commercial VR program to produce a variety of learning objects. Multiple types or “dimensions” of anatomical information can be embedded in these objects to provide different kinds of functions, including interactive atlases, examination questions, and complex, multistructure presentations. The use of clinical imaging data and workstation software speeds up the production of VR simulations, compared with reconstruction‐based modeling from segmented cadaver cross‐sections, while providing useful examples of normal structural variation and pathological anatomy. Anat Sci Ed 1:50–55, 2008. © 2008 American Association of Anatomists.  相似文献   

8.
儿童版画制作是学前教育专业学生美术课程的一项重要内容,专业版画艺术的种类很多,其中实物对印版画、吹塑纸版画、剪贴纸版画、综合材料纸版画等内容符合学前教育的专业特点,是其美术制作课程中的讲授重点。在版画创作中,需要脑力与肢体劳动协同工作,并在此基础上获得身心一致的艺术体验,有助于培养学生动手能力和创造能力,对学生综合素质的提高有重要的意义。  相似文献   

9.
10.
ON THE COVER: In response to a Letter to the Editors from Drs. Cornwall and Stringer in New Zealand regarding cadaver CT scans in gross anatomy courses, the ASE Editors received additional letters from schools in the United States and abroad commenting on this practice. One of the letters was from Chika R. Nwachukwu, Ph.D., a current fourth‐year medical student at Mayo Medical School. Chika, who had taken a human anatomy course during her first year in medical school and served as an anatomy teaching assistant during her third‐year, commented that having a CT of their cadaver significantly enhanced her learning. The Mayo course, featured on the cover, utilizes cadaver CTs as an integral part of the anatomy curriculum. These Letters to the Editors are published in the current issue of ASE.  相似文献   

11.
Advances in computer and interface technologies have made it possible to create three‐dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the human body. However, there is limited empirical evidence to guide the development and integration of effective computer models for teaching and learning. The purpose of this article is to describe the development of a dynamic head and neck model with flexible displays (2D, 3D, and stereoscopic 3D) and interactive control features that can be later used to design and test the efficacy of computer models as a means of improving student learning. The model was created using computer tomography scans of a human cadaver. Anatomical structures captured on the scans were segmented into discreet areas, and then reconstructed in three‐dimensions using specialized software. The final model consists of 70 distinct anatomical structures that can be displayed in 2D, 3D, or stereoscopic 3D. In 3D mode, a mouse can be used to actively and continuously interact with the model by manipulating viewer orientation, altering surface transparency, superimposing 2D scans with 3D reconstructions, removing or adding structures sequentially, and customizing animated scenes to show complex anatomical pathways or relationships. Anat Sci Educ 2: 294–301, 2009. © 2009 American Association of Anatomists.  相似文献   

12.
Recent improvements in three‐dimensional (3D) virtual modeling software allows anatomists to generate high‐resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high‐resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal cavity, septum, turbinates, paranasal sinuses, optic nerve, pituitary gland, carotid artery, cervical vertebrae, atlanto‐axial joint, cervical spinal cord, cervical nerve root, and vertebral artery that can be used to teach clinical trainees (students, residents, and fellows) approaches for trans‐sphenoidal pituitary surgery and cervical spine injection procedure. Volume, surface rendering and a new rendering technique, semi‐auto‐combined, were applied in the study. These models enable visualization, manipulation, and interaction on a computer and can be presented in a stereoscopic 3D virtual environment, which makes users feel as if they are inside the model. Anat Sci Educ 10: 598–606. © 2017 American Association of Anatomists.  相似文献   

13.
Three‐dimensional (3D) food printing is a new technology that can be used to produce personalized and customized food products. However, very little research has been completed on how 3D food printers could be used as educational tools. As such, the objective of this study was to evaluate how teachers (n = 6), dietitians (n = 6), and nutrition students (n = 11) envision the use of 3D food printers when disseminating information about food and nutrition. Focus groups were conducted with teachers, dietitians, and nutrition students. Initially, the participants were introduced to the concept of 3D food printing and then they were asked how they could use a 3D food printer in their teachings. The participants did not feel that a 3D food printer would enhance their teaching and instead felt it could confuse or frighten people. Also, all of the participants were worried about learning how to 3D print foods. The participants did state that people would be interested in watching a 3D food printer. Furthermore, the teachers and nutrition students indicated they thought a demonstration of a 3D food printer would lead to more interest in food and nutrition. Additionally, they thought a 3D food printer could be used to create visually appealing foods. Overall, until 3D food printers are found in residential and commercial kitchens, the participants did not think it would enhance their teachings; however, they did indicate that 3D food printing demonstrations could lead to students being interested in the food and nutrition fields.  相似文献   

14.
ON THE COVER: In order to improve student learning of surface anatomy, full body digital X‐ray images of each cadaver are part of the learning materials available to medical students at Stellenbosch University in South Africa . Here Dr. Kotzé gives instruction to her students on palpating and visualizing various bony points and other non‐palpable surface anatomical landmarks on the images and a mounted skeleton. This exercise is later reinforced using a drawing activity. In this issue of ASE Dr. Kotzé and her co‐authors discuss the use of these full body digital X‐rays in anatomy education.  相似文献   

15.
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex3D flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm3) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex3D printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi‐layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ 11: 65–72. © 2017 American Association of Anatomists.  相似文献   

16.
数码技术与艺术的结合,扩展了艺术实践的空间。特别是在版画领域中,数码技术具有足够的物质条件和技术支持。在艺术与技术的结合下产生了数码版画。数码版画是数字化时代的产物,数码版画的产生和特征充分说明传统版画和数码版画具有融合性,同时又说明了数字技术改变艺术形态是必然的发展趋势。  相似文献   

17.
The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with intricate dissection, ventricular structures remain difficult to observe. Three-dimensional (3D) computer reconstruction of the ventricular system offers a solution to this problem. This study aims to create an accurate 3D computer reconstruction of the ventricular system with surrounding structures, including the brain and cerebellum, using commercially available 3D rendering software. Magnetic resonance imaging (MRI) scans of a male cadaver were segmented using both semiautomatic and manual tools. Segmentation involves separating voxels of different grayscale values to highlight specific neural structures. User controls enable adding or removing of structures, altering their opacity, and making cross-sectional slices through the model to highlight inner structures. Complex physiologic concepts, such as the flow of cerebrospinal fluid, are also shown using the 3D model of the ventricular system through a video animation. The model can be projected stereoscopically, to increase depth perception and to emphasize spatial relationships between anatomical structures. This model is suited for both self-directed learning and classroom teaching of the 3D anatomical structure and spatial orientation of the ventricles, their connections, and their relation to adjacent neural and skeletal structures.  相似文献   

18.
The authors investigated the relations among reasons students gave for why they would not cheat in response to a cheating vignette, self-reported cheating, and the extent to which students take responsibility for promoting academic integrity. The authors surveyed 1,086 graduate and undergraduate students. Students who said they would not cheat because of punitive consequences were more likely to report that they cheated in classes and took less responsibility for promoting academic integrity. Students whose reasons related to the value of learning, personal character, and/or it being simply not right reported less cheating and took more responsibility for academic integrity. Academic-integrity responsibility correlated with less cheating. Results are discussed in terms of the effectiveness of punishment and the significance of internalizing integrity standards.  相似文献   

19.
20.
《采矿概论》是一门针对非采矿工程和安全工程专业本科生开设的通识教育必修课,通过该课程让学生们学习和认识到采矿工程中的相关专业知识和问题。但由于学生们欠缺与采矿工程相关的知识基础,因此在学习本门课程的过程中存在理解困难等问题。针对这种状况,文章作者提出将三维数值计算软件FLAC3D应用于本门课程的授课中,利用FLAC3D强大的建模能力,构建关于采矿工程问题的三维模型并在课堂上演示,以帮助学生们理解采矿工程的相关知识。在本论文中,作者以三个案例为基础,讲解了FLAC3D在课堂授课中的演示过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号