首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Team‐based learning (TBL) is an instructional strategy that combines independent out‐of‐class preparation for in‐class discussion in small groups. This approach has been successfully adopted by a number of medical educators. This strategy allowed us to eliminate anatomy lectures and incorporate small‐group active learning. Although our strategy is a modified use of classical TBL, in the text, we use the standard terminology of TBL for simplicity. We have modified classical TBL to fit our curricular needs and approach. Anatomy lectures were replaced with TBL activities that required pre‐class reading of assigned materials, an individual self‐assessment quiz, discussion of learning issues derived from the reading assignments, and then the group retaking the same quiz for discussion and deeper learning. Students' performances and their educational experiences in the TBL format were compared with the traditional lecture approach. We offer several in‐house unit exams and a final comprehensive subject exam provided by the National Board of Medical Examiners. The students performed better in all exams following the TBL approach compared to traditional lecture‐based teaching. Students acknowledged that TBL encouraged them to study regularly, allowed them to actively teach and learn from peers, and this served to improve their own exam performances. We found that a TBL approach in teaching anatomy allowed us to create an active learning environment that helped to improve students' performances. Based on our experience, other preclinical courses are now piloting TBL. Anat Sci Ed 1:3–9, 2008. © 2007 American Association of Anatomists.  相似文献   

2.
Team‐based learning (TBL) combines independent out of class preparation with in class small group discussion. We adopted TBL in teaching first year medical gross anatomy. In this study, we evaluated student perceptions of TBL by using a survey that elicited perceptions of both pedagogy and mode of learning. Anatomy lectures were replaced with required preclass readings, self‐assessment quizzes, small group discussions of assignments, and groups retaking the same quizzes for deeper learning. At the course conclusion, students were surveyed to assess their preference for TBL, their perceptions of TBL effectiveness, and their perceptions of successful interpersonal relationships within groups. Respondents (n = 317; 89% response) were asked to rate the extent that they agreed (?2 = strongly disagree; ?1 = disagree; 0 = neutral; 1 = agree; and 2 = strongly agree). A principal components factor analysis with varimax rotation identified two 8‐item factors: “perceptions of TBL” and “perceptions of teamwork.” Internal consistency for each was high [Cronbach's alpha = 0.908 (preference for TBL); 0.884 (preference of teamwork)]. Results of one‐way analysis of variance between Honors/High Pass/Pass/Fail students indicated that Honors (n = 73) tended to rate perceptions of TBL higher than Pass (n = 54) [mean difference = 2.92; 95% CI (0.05, 5.79)], and also higher than Fail (n = 11) [mean difference = 6.30; 95% CI (1.13, 11.47)]. However, each had overallpositive ratings. No difference was noted between mean ratings of teamwork, which were also, overall, positive. We conclude that medical students view TBL favorably irrespective of their grades. Anat Sci Educ 2:150–155, 2009. © 2009 American Association of Anatomists.  相似文献   

3.
Team-based learning (TBL) strategy is being adopted in medical education to implement interactive small group learning. We have modified classical TBL to fit our curricular needs and approach. Anatomy lectures were replaced with TBL that required preparation of assigned content specific discussion topics (in the text referred as "discussion topics"), an individual self-assessment quiz (IRAT), analysis of the discussion topics, and then the team retaking the same quiz (GRAT) for discussion and deeper learning. Embryology and clinical correlations were given as lectures. Unit examinations consisted of graded IRAT and GRAT. The National Board of Medical Examiners (NBME) Subject Examination was the comprehensive final examination. To evaluate the effect of TBL on student performance we compared the departmental and NBME subject examination scores between the traditional and TBL curricula. We collected five years of data on student performance in TBL-based anatomy and lecture-based preclinical courses. Our results show that departmental and NBME subject examination scores for TBL-based anatomy were higher than those for lecture-based anatomy. We subsequently compared average NBME scores for anatomy with those in other preclinical courses that were lecture-based. Average NBME anatomy scores were significantly higher than those for all the lecture-based preclinical courses. Since the introduction of TBL in anatomy, student performance has progressively improved in the NBME subject examination. Students perceived TBL as a motivator to be a responsible team member and to contribute to collective learning by the team. Further, it reinforced self-directed learning and fostered an appreciation for peer respect. Interestingly, these perceptions were uniform irrespective of student course performance.  相似文献   

4.
Problem‐based learning (PBL) has been introduced to medical schools around the world and has increasingly become a popular pedagogical technique in Asian countries since 1990. Gross anatomy is a fundamental basic science course in virtually all medical training programs, and the methods used to teach it are under frequent scrutiny and revision. Students often struggle with the vast collection of new terms and complex relationships between structures that they must learn. To help students with this process, our department teaches separate systemic and regional anatomy courses, the latter in a PBL format. After three years of using PBL in our regional anatomy course, we have worked out a set of effective instructions that we would like to share with other medical schools. We report here evidence that our clinical PBL approach stimulates students' interest in learning and enhances anatomy education in a way that can foster better practices in our future medical work force. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

5.
Areas of difficulty faced by our veterinary medicine students, with respect to their learning in dissection classes, were identified. These challenges were both general adult‐learning related and specific to the discipline of anatomy. Our aim was to design, implement, and evaluate a modified reciprocal peer‐assisted/team‐based learning format—Doing Dissections Differently (DDD)—to complement existing dissection classes, with the intention of enhancing both student learning and the student learning experience. Second year veterinary medicine students (n = 193), in their usual dissection groups, were randomly assigned to one of four roles: anatomist, clinician, radiologist, and learning resources manager. Students attended a preparatory workshop outlining the skills required for effective execution of their role. They were then asked to perform their roles throughout five consecutive musculoskeletal dissection classes. Student attitudes to dissection classes before and after DDD were evaluated by questionnaire (146 respondents). There was a significant (P = 0.0001) improvement after DDD in a number of areas: increased perceived value of dissection classes as an anatomy learning aid; improved appreciation of the clinical relevance of anatomy; increased use of resources before and during dissection classes; and longer preparation time for dissection classes. Before DDD, 45% of students felt that at least one peer did not contribute usefully to the group during dissection classes; no improvement was seen in this measure after DDD. Although the new format highlighted a potential need to improve teamwork, most students actively engaged with DDD, with dissection classes valued more highly and utilized more effectively. © 2012 American Association of Anatomists.  相似文献   

6.
Speech pathology students enrolled in a lecture‐based gross human anatomy program completed two out of nine topics in self‐directed mode. Student performance in quizzes was compared for the two modes, and the students completed questionnaires on their perceptions of the self‐directed mode of delivery. Students performed as well in the first self‐directed topic as they did in lecture‐based material, but performance declined significantly on the second self‐directed topic. Correlations showed that students who performed well in lecture‐based topics also performed well on self‐directed topics. The major issues that arose in the student questionnaires were primarily related to the amount of content in the topics and the length of time required for completion. We conclude that there is a strong need for appropriate design of distance education materials to reflect student perceptions of length, content, and time investment, and more importantly that there is a need to ensure extensive communication and support of students studying in distance education/self‐directed modes for the first time. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

7.
8.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

9.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

10.
Research on the benefits of visual learning has relied primarily on lecture‐based pedagogy, but the potential benefits of combining active learning strategies with visual and verbal materials on learning anatomy has not yet been explored. In this study, the differential effects of text‐based and image‐based active learning exercises on examination performance were investigated in a functional anatomy course. Each class session was punctuated with an average of 12 text‐based and image‐based active learning exercises. Participation data from 231 students were compared with their examination performance on 262 questions associated with the in‐class exercises. Students also rated the helpfulness and difficulty of the in‐class exercises on a survey. Participation in the active learning exercises was positively correlated with examination performance (r = 0.63, P < 0.001). When controlling for other key demographics (gender, underrepresented minority status) and prior grade point average, participation in the image‐based exercises was significantly correlated with performance on examination questions associated with image‐based exercises (P < 0.001) and text‐based exercises (P < 0.01), while participation in text‐based exercises was not. Additionally, students reported that the active learning exercises were helpful for seeing images of key ideas (94%) and clarifying key course concepts (80%), and that the image‐based exercises were significantly less demanding, less hard and required less effort than text‐based exercises (P < 0.05). The findings confirm the positive effect of using images and active learning strategies on student learning, and suggest that integrating them may be especially beneficial for learning anatomy. Anat Sci Educ 10: 444–455. © 2017 American Association of Anatomists.  相似文献   

11.
The use of technology‐enhanced learning (TEL) resources is now a common tool across a variety of healthcare programs. Despite this popular approach to curriculum delivery there remains a paucity in empirical evidence that quantifies the change in learning gain. The aim of the study was to measure the changes in learning gain observed with anatomy drawing screencasts in comparison to a traditional paper‐based resource. Learning gain is a widely used term to describe the tangible changes in learning outcomes that have been achieved after a specific intervention. In regard to this study, a cohort of Year 2 medical students voluntarily participated and were randomly assigned to either a screencast or textbook group to compare changes in learning gain across resource type. Using a pre‐test/post‐test protocol, and a range of statistical analyses, the learning gain was calculated at three test points: immediate post‐test, 1‐week post‐test and 4‐week post‐test. Results at all test points revealed a significant increase in learning gain and large effect sizes for the screencast group compared to the textbook group. Possible reasons behind the difference in learning gain are explored by comparing the instructional design of both resources. Strengths and weaknesses of the study design are also considered. This work adds to the growing area of research that supports the effective design of TEL resources which are complimentary to the cognitive theory of multimedia learning to achieve both an effective and efficient learning resource for anatomical education. Anat Sci Educ 10: 307–316. © 2016 American Association of Anatomists.  相似文献   

12.
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer‐assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low‐budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer‐based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first‐year medical students who took the elective CHA course and those who did not in the three academic years 2007–2008, 2008–2009, and 2009–2010. The results of this study indicate that the CHA‐enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer‐assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer‐assisted learning in a multilingual and diverse cultural environment. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

13.
Web‐based computer‐aided instruction (CAI) has become increasingly important to medical curricula. This multi‐year study investigated the effectiveness of CAI and the factors affecting level of individual use. Three CAI were tested that differed in specificity of applicability to the curriculum and in the level of student interaction with the CAI. Student personality preferences and learning styles were measured using the Meyers Briggs Type Indicator (MBTI) and Kolb's Learning Style Inventory (LSI). Information on “computer literacy” and use of CAI was collected from student surveys. Server logs were used to quantify individual use of respective CAI. There was considerable variability in the level of utilization of each CAI by individual students. Individual use of each CAI differed and was associated with gender, MBTI preferences and learning style, but not with “computer literacy.” The majority of students found the CAI useful for learning and used the CAI by themselves. Students who accessed the CAI resources most frequently scored significantly higher on exams compared with students who never accessed the resources. Our results show that medical students do not uniformly use CAI developed for their curriculum and this variability is associated with various attributes of individual students. Our data also provide evidence of the importance of understanding student preferences and learning styles when implementing CAI into the curriculum. Anat Sci Ed 2:2–8, 2009. © 2009 American Association of Anatomists.  相似文献   

14.
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi‐disciplinary care team. This study aimed to create a modified team‐based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first‐year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5–6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case‐based multiple choice post‐test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed‐rank test. Students scored higher on the collaborative post‐test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94–99. © 2017 American Association of Anatomists.  相似文献   

15.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

16.
The time, material, and staff‐consuming nature of anatomy's traditional pen‐and‐paper assessment system, the increase in the number of students enrolling in medical schools and the ever‐escalating workload of academic staff have made the use of computer‐based assessment (CBA) an attractive proposition. To understand the impact of such shift in the assessment method, an experimental study evaluating its effect on students’ performance was designed. Additionally, students’ opinions toward CBA were gathered. Second‐year medical students attending a Clinical Anatomy course were randomized by clusters in two groups. The pen‐and‐paper group attended two sessions, each consisting of a traditional sectional anatomy steeplechase followed by a theoretical examination, while the computer group was involved in two similar sessions conducted in a computerized environment. At the end of each of the computer sessions, students in this group filled an anonymous questionnaire. In the first session, pen‐and‐paper group students scored significantly better than computer‐group students in both the steeplechase (mean ± standard deviation: 66.00 ± 14.15% vs. 43.50 ± 19.10%; P < 0.001) and the theoretical examination (52.50 ± 12.70% vs. 39.00 ± 21.10%; P < 0.001). In the second session, no statistically significant differences were found for both the steeplechase (59.50 ± 17.30% vs. 54.50 ± 17.00%; P = 0.085) and the theoretical examination (57.50 ± 13.70% vs. 54.00 ± 14.30%; P = 0.161). Besides, an intersession improvement in students’ perceptions toward CBA was registered. These results suggest that, after a familiarization period, CBA might be a performance equivalent and student accepted alternative to clinical anatomy pen‐and‐paper theoretical and practical examinations. Anat Sci Educ 11: 124–136. © 2017 American Association of Anatomists.  相似文献   

17.
It has become increasingly apparent that no single method for teaching anatomy is able to provide supremacy over another. In an effort to consolidate and enhance learning, a modernized anatomy curriculum was devised by attempting to take advantage of and maximize the benefits from different teaching methods. Both the more traditional approaches to anatomy teaching, as well as modern, innovative educational programs were embraced in a multimodal system implemented over a decade. In this effort, traditional teaching with lectures and dissection was supplemented with models, imaging, computer‐assisted learning, problem‐based learning through clinical cases, surface anatomy, clinical correlation lectures, peer teaching and team‐based learning. Here, we review current thinking in medical education and present our transition from a passive, didactic, highly detailed anatomy course of the past, to a more interactive, as well as functionally and clinically relevant anatomy curriculum over the course of a decade. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

18.
The authors describe and evaluate a method to motivate medical students to maximize the effectiveness of dissection opportunities by using In‐Course‐Assessments (ICAs) to encourage teamwork. A student's final mark was derived by combining the group dissection mark, group mark for questions, and their individual question mark. An analysis of the impact of the ICA was performed by comparing end of module practical summative marks in student cohorts who had, or had not, participated in the ICAs. Summative marks were compared by two‐way ANOVA followed by Dunnets test, or by repeated measures ANOVA, as appropriate. A cohort of medical students was selected that had experienced both practical classes without (year one) and with the new ICA structure (year two). Comparison of summative year one and year two marks illustrated an increased improvement in year two performance in this cohort. A significant increase was also noted when comparing this cohort with five preceding year two cohorts who had not experienced the ICAs (P <0.0001). To ensure that variation in the practical summative examination was not impacting on the data, a comparison was made between three cohorts who had performed the same summative examination. Results show that students who had undertook weekly ICAs showed significantly improved summative marks, compared with those who did not (P <0.0001). This approach to ICA promotes engagement with learning resources in an active, team‐based, cooperative learning environment. Anat Sci Educ 7: 224–233. © 2013 American Association of Anatomists.  相似文献   

19.
The pedagogical approach for both didactic and laboratory teaching of anatomy has changed in the last 25 years and continues to evolve; however, assessment of student anatomical knowledge has not changed despite the awareness of Bloom's taxonomy. For economic reasons most schools rely on multiple choice questions (MCQ) that test knowledge mastered while competences such as critical thinking and skill development are not typically assessed. In contrast, open‐ended question (OEQ) examinations demand knowledge construction and a higher order of thinking, but more time is required from the faculty to score the constructed responses. This study compares performances on MCQ and OEQ examinations administered to a small group of incoming first year medical students in a preparatory (enrichment) anatomy course that covered the thorax and abdomen. In the thorax module, the OEQ examination score was lower than the MCQ examination score; however, in the abdomen module, the OEQ examination score improved compared to the thorax OEQ score. Many students attributed their improved performance to a change from simple memorization (superficial learning) for cued responses to conceptual understanding (deeper learning) for constructed responses. The results support the view that assessment with OEQs, which requires in depth knowledge, would result in student better performance in the examination. Anat Sci Educ 11: 254–261. © 2017 American Association of Anatomists.  相似文献   

20.
Despite advances to move anatomy education away from its didactic history, there is a continued need for students to contextualize their studies to make learning more meaningful. This article investigates authentic learning in the context of an inquiry‐based approach to learning human gross anatomy. Utilizing a case‐study design with three groups of students (n = 18) and their facilitators (n = 3), methods of classroom observations, interviews, and artifact collection were utilized to investigate students' experiences of learning through an inquiry project. Qualitative data analysis through open and selective coding produced common meaningful themes of group and student experiences. Overall results demonstrate how the project served as a unique learning experience where learners engaged in the opportunity to make sense of anatomy in context of their interests and wider interdisciplinary considerations through collaborative, group‐based investigation. Results were further considered in context of theoretical frameworks of inquiry‐based and authentic learning. Results from this study demonstrate how students can engage anatomical understandings to inquire and apply disciplinary considerations to their personal lives and the world around them. Anat Sci Educ 10: 538–548. © 2017 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号