首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

2.
3.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

4.
Research on the benefits of visual learning has relied primarily on lecture‐based pedagogy, but the potential benefits of combining active learning strategies with visual and verbal materials on learning anatomy has not yet been explored. In this study, the differential effects of text‐based and image‐based active learning exercises on examination performance were investigated in a functional anatomy course. Each class session was punctuated with an average of 12 text‐based and image‐based active learning exercises. Participation data from 231 students were compared with their examination performance on 262 questions associated with the in‐class exercises. Students also rated the helpfulness and difficulty of the in‐class exercises on a survey. Participation in the active learning exercises was positively correlated with examination performance (r = 0.63, P < 0.001). When controlling for other key demographics (gender, underrepresented minority status) and prior grade point average, participation in the image‐based exercises was significantly correlated with performance on examination questions associated with image‐based exercises (P < 0.001) and text‐based exercises (P < 0.01), while participation in text‐based exercises was not. Additionally, students reported that the active learning exercises were helpful for seeing images of key ideas (94%) and clarifying key course concepts (80%), and that the image‐based exercises were significantly less demanding, less hard and required less effort than text‐based exercises (P < 0.05). The findings confirm the positive effect of using images and active learning strategies on student learning, and suggest that integrating them may be especially beneficial for learning anatomy. Anat Sci Educ 10: 444–455. © 2017 American Association of Anatomists.  相似文献   

5.
Ultrasound (US) can enhance anatomy education, yet is incorporated into few non‐medical anatomy programs. This study is the first to evaluate the impact of US training in gross anatomy for non‐medical students in the United States. All 32 master's students enrolled in gross anatomy with the anatomy‐centered ultrasound (ACUS) curriculum were recruited. Mean Likert ratings on pre‐ and post‐course surveys (100% response rates) were compared to evaluate the effectiveness of the ACUS curriculum in developing US confidence, and gauge its impact on views of US. Post‐course, students reported significantly higher (P < 0.001) mean confidence ratings in five US skills (pre‐course versus post‐course mean): obtaining scans (3.13 ±1.04 versus 4.03 ±0.78), optimizing images (2.78 ±1.07 versus 3.75 ±0.92), recognizing artifacts (2.94 ±0.95 versus 3.97 ±0.69), distinguishing tissue types (2.88 ±0.98 versus 4.09 ±0.69), and identifying structures (2.97 ±0.86 versus 4.03 ±0.59), demonstrating the success of the ACUS curriculum in students with limited prior experience. Views on the value of US to anatomy education and to students' future careers remained positive after the course. End‐of‐semester quiz performance (91% response rate) provided data on educational outcomes. The average score was 79%, with a 90% average on questions about distinguishing tissues/artifacts, demonstrating positive learning outcomes and retention. The anatomy‐centered ultrasound curriculum significantly increased confidence with and knowledge of US among non‐medical anatomy students with limited prior training. Non‐medical students greatly value the contributions that US makes to anatomy education and to their future careers. It is feasible to enhance anatomy education outside of medical training by incorporating US. Anat Sci Educ 10: 348–362. © 2016 American Association of Anatomists.  相似文献   

6.
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi‐disciplinary care team. This study aimed to create a modified team‐based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first‐year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5–6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case‐based multiple choice post‐test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed‐rank test. Students scored higher on the collaborative post‐test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94–99. © 2017 American Association of Anatomists.  相似文献   

7.
The one‐minute preceptor (OMP) is a time‐efficient, learner‐centered teaching method used in a busy ambulatory care setting. This project evaluated the effects of training experienced anatomy teachers in the use of the OMP in the gross anatomy laboratory on students' perceived learning. Second‐year medical students from a five‐year, undergraduate‐entry, system‐ and problem‐based medical program were divided randomly into two groups of 76 students each. The groups took part in the same gross anatomy laboratory session on different dates, supervised by the same two teachers (both with over 25 years of teaching experience). The teachers attended a workshop on the use of the OMP between the two sessions. Students were given a questionnaire at the end of the two sessions to indicate their agreements to statements regarding their learning experiences. Semistructured interviews were conducted with the two teachers after the second session. Results showed that training experienced anatomy teachers in the use of the OMP did not result in improvement of student learning perception in the gross anatomy laboratory. The experienced teachers have developed their own approaches with elements similar to those in the OMP: being learner centered and adaptable to individual student's needs, providing feedback, and enhancing teacher immediacy. They do not have an explicit structure such as the OMP, and are thus flexible and adaptive. Confining the teachers' teaching behaviors to the OMP structure could limit their performance. Although there are theoretical advantages for novice teachers in adopting the OMP technique, these advantages still need to be supported by further studies. Anat Sci Educ 7: 124–129. © 2013 American Association of Anatomists.  相似文献   

8.
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

9.
Starting in 2004, a medical school gross anatomy course faced with a 30% cut in hours went through an extensive redesign, which transformed a traditional dissection course into a course with a clinical focus, learning societies, and extensive on‐line learning support. Built into the redesign process was an extensive and ongoing assessment process, which included student focus groups, faculty development, surveys, and examinations. These assessments were used formatively, to enhance the course from year to year, and summatively, to determine how well the course was meeting the new learning objectives. The assessments from focus groups and faculty development prompted changes in support structures provided to students and the training and preparation of faculty. Survey results showed that, after student satisfaction declined the first year, satisfaction increased steadily through the fourth iteration as the course gained acceptance by students and faculty alike. There was a corresponding increase in the performance of students on course examinations. An additional examination given to students one and a half and three years after their anatomy course ended demonstrated the redesigned course's long‐term effectiveness for retaining anatomical knowledge and applying it to clinical cases. Compared to students who took the original course, students who took the shorter, more clinical course performed as well, or better, on each section of the examination. We attribute these positive results to the innovative course design and to the changes made based on our formative assessment program. Anat Sci Educ, 2010. © 2010 American Association of Anatomists.  相似文献   

10.
The preclinical compulsory elective course “Ready for the Operating Room (OR)!?” [in German]: “Fit für den OP (FOP)”] was implemented for students in their second year, who were simultaneously enrolled in the gross anatomy course. The objective of the study was to determine whether the direct practical application of anatomical knowledge within the surgical context of the course led to any improvement in learning motivation, learning orientation, and ultimately examination results in the gross anatomy course, as compared with a control group. Within the scope of five teaching sessions, the students learned surgical hand disinfection, suturing techniques, and the identification of commonly used surgical instruments. In addition, the students attended five surgical demonstrations performed by surgical colleagues on cadavers. Successful learning of these basic skills was then assessed based on an Objectively Structured Practical Examination. Learning motivation and learning orientation in both subgroups was determined using the SELLMO‐ST motivation test and the Approaches and Study Skills Inventory test. While a significant increase in work avoidance was identified in the control group, this was not the case for FOP participants. Similarly, an increase in the “deep approach” to learning, as well as a decrease in the “surface approach,” was able to be documented among the FOP participants following completion of the course. The results suggest that students enrolled in the gross anatomy course, who were simultaneously provided with the opportunity to learn in clinical context, were more likely to be successful at maintaining learning motivation and learning orientation required for the learning process, than students who attended the gross anatomy course alone. Anat Sci Educ. 7: 3–11. © 2013 American Association of Anatomists.  相似文献   

11.
Recently, faculty at Pritzker School of Medicine, The University of Chicago, have made efforts to improve the depth of radiological anatomy knowledge that students have, but no insights exist as to student and resident opinions of how clinically helpful deep anatomical understanding is. A single‐institution survey of second‐ and fourth‐year medical students and postgraduate year 1–4 residents from 11 specialties, composed of five‐point Likert questions, sample examination questions, and narrative response questions, was distributed in 2015. One hundred seventy‐seven of the 466 potential respondents replied (71 residents and 106 students), response rate 38.0%. No nonresponse bias was present in two separate analyses. Respondents generally favored a superficial “identification” question as more relevant to clinical practice, which was positively associated with increasing clinical experience ρ = 0.357, P < 0.001 by point‐biserial correlation. Students and residents most commonly used self‐directed methods to learn medical imaging during their medical anatomy courses (72.6 and 57.7%, respectively). Small group education was least commonly used by students and residents (45.3 and 39.4%, respectively), but most commonly recommended (62.3 and 69%, respectively). A total of 56.6 and 64.8% of students and residents, respectively, reported that having multiple learning methods was “quite” or “extremely” important. Respondents with more clinical experience were more likely to report that a superficial identification question was more clinically relevant than a question testing deeper radiological anatomy knowledge. Small group learning was preferred among students and residents but was the least commonly employed method of instruction. Both findings contrast starkly with current radiological anatomy instructional understanding and practices. Anat Sci Educ 11: 25–31. © 2017 American Association of Anatomists.  相似文献   

12.
Recognition of anatomical landmarks in live animals (and humans) is key for clinical practice, but students often find it difficult to translate knowledge from dissection‐based anatomy onto the live animal and struggle to acquire this vital skill. The purpose of this study was to create and evaluate the use of an equine anatomy rug (“Anato‐Rug”) depicting topographical anatomy and key areas of lung, heart, and gastrointestinal auscultation, which could be used together with a live horse to aid learning of “live animal” anatomy. Over the course of 2 weeks, 38 third year veterinary students were randomly allocated into an experimental group, revising topographical anatomy from the “Anato‐Rug,” or a control group, learning topographical anatomy from a textbook. Immediately post activity, both groups underwent a test on live anatomy knowledge and were retested 1 week later. Both groups then completed a questionnaire to ascertain their perceptions of their learning experiences. Results showed that the experimental groups scored significantly higher than the control group at the first testing session, experienced more enjoyment during the activity and gained more confidence in identifying anatomical landmarks than the control group. There was not a significant difference in scores between groups at the second testing session. The findings indicate that the anatomy rug is an effective learning tool that aids understanding, confidence, and enjoyment in learning equine thorax and abdominal anatomy; however it was not better than traditional methods with regards to longer term memory recall. Anat SciEduc. © 2012 American Association of Anatomists.  相似文献   

13.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

14.
Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first‐year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound‐guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five‐point scale. Cognitive load on using ultrasound was measured on a nine‐point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on “image interpretation” was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = ?0.22; P = 0.61]. Weighted factor score on “basic knobology” was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P < 0.001). Using ultrasound to teach anatomy does not negatively impact learning and may improve learning outcomes. Anat Sci Educ 10: 144–151. © 2016 American Association of Anatomists.  相似文献   

15.
Untimed examinations are popular with students because there is a perception that first impressions may be incorrect, and that difficult questions require more time for reflection. In this report, we tested the hypothesis that timed anatomy practical examinations are inherently more difficult than untimed examinations. Students in the Doctor of Physical Therapy program at Thomas Jefferson University were assessed on their understanding of anatomic relationships using multiple‐choice questions. For the class of 2012 (n = 46), students were allowed to circulate freely among 40 testing stations during the 40‐minute testing session. For the class of 2013 (n = 46), students were required to move sequentially through the 40 testing stations (one minute per item). Students in both years were given three practical examinations covering the back/upper limb, lower limb, and trunk. An identical set of questions was used for both groups of students (untimed and timed examinations). Our results indicate that there is no significant difference between student performance on untimed and timed examinations (final percent scores of 87.3 and 88.9, respectively). This result also held true for students in the top and bottom 20th percentiles of the class. Moreover, time limits did not lead to errors on even the most difficult, higher‐order questions (i.e., items with P‐values < 0.70). Thus, limiting time at testing stations during an anatomy practical examination does not adversely affect student performance. Anat Sci Educ 6: 281–285. © 2013 American Association of Anatomists.  相似文献   

16.
As part of an institutional program sponsored by the Centre for Teaching Excellence at the Universidad del Norte, Barranquilla, Colombia, we developed an educational research study on two sessions of human anatomy in which we combined team‐based learning (TBL) and the use of iPads. Study data included the TBL, assessments applied during the course, student's grades on mid‐term examinations and students' perceptions of their experiences. Students reported a positive attitude toward the use of the TBL sessions, and the results showed a significant improvement in their learning between the first and second sessions. Significantly positive correlations (P < 0.05) were obtained between (a) the individual students' readiness test performance 1 and mid‐term examination 1, (b) the individual readiness test performances from Session 1 to Session 2, and (c) the group readiness test performances from the first and second sessions. These results point to positive learning experiences for these students. Analyses of the students' reflections on their activities also pointed toward future challenges. Anat Sci Educ 7: 399–405. © 2014 American Association of Anatomists.  相似文献   

17.
The present study evaluated the students' psychological well-being, experiences, performance, and perception of learning regional anatomy remotely. A regional anatomy remote learning curriculum was designed and learning materials were delivered virtually to 120 undergraduate medical students at Jinan University, China. All the students consented and voluntarily participated in this study by completing self-administered online questionnaires including the Zung's Self-Rating Anxiety and Depression Scales at the beginning and end of the learning session. A subset participated in focus group discussions. Most of the students (90.0%) positively evaluated the current distance learning model. More than 80% were satisfied with the content arrangement and coverage. Many students preferred virtual lectures (68.2%) and videos showing dissections (70.6%) during the distance learning sessions. However, writing laboratory reports and case-based learning were the least preferred modes of learning as they were only preferred by 23.2% and 14.1% of the students, respectively. There was no significant lockdown-related anxiety or depression reported by students using depression and anxiety scales as well as feedback from focus group discussions. The surveyed students' confidence scores in distance learning were significantly higher after 5 weeks than at the beginning of the session (3.05 ± 0.83 vs. 3.70 ± 0.71, P < 0.05). Furthermore, the present results showed no significant differences between the current group's academic performance in the unit tests as well as the final overall evaluation for different parts of the course compared to that of the previous year's cohort. The findings above were congruent with focus group discussion data that the use of the online teaching platform for regional anatomy significantly improved the students' confidence in virtual and self-directed learning and did not negatively affect their academic performance.  相似文献   

18.
Tuebingen's Sectio Chirurgica (TSC) is an innovative, interactive, multimedia, and transdisciplinary teaching method designed to complement dissection courses. The Tuebingen's Sectio Chirurgica (TSC) allows clinical anatomy to be taught via interactive live stream surgeries moderated by an anatomist. This method aims to provide an application‐oriented approach to teaching anatomy that offers students a deeper learning experience. A cohort study was devised to determine whether students who participated in the TSC were better able to solve clinical application questions than students who did not participate. A total of 365 students participated in the dissection course during the winter term of the 2012/2013 academic year. The final examination contained 40 standard multiple‐choice (S‐MC) and 20 clinically‐applied multiple‐choice (CA‐MC) items. The CA‐MC items referred to clinical cases but could be answered solely using anatomical knowledge. Students who regularly participated in the TSC answered the CA‐MC questions significantly better than the control group (75% and 65%, respectively; P < 0.05, Mann‐Whitney U test). The groups exhibited no differences on the S‐MC questions (85% and 82.5%, respectively; P > 0.05). The CA‐MC questions had a slightly higher level of difficulty than the S‐MC questions (0.725 and 0.801, respectively; P = 0.083). The discriminatory power of the items was comparable (S‐MC median Pearson correlations: 0.321; CA‐MC: 0.283). The TSC successfully teaches the clinical application of anatomical knowledge. Students who attended the TSC in addition to the dissection course were able to answer CA‐MC questions significantly better than students who did not attend the TSC. Thus, attending the TSC in addition to the dissection course supported students' clinical learning goals. Anat Sci Educ 10: 46–52. © 2016 American Association of Anatomists.  相似文献   

19.
This study compared the efficacy of two cardiac anatomy teaching modalities, ultrasound imaging and cadaveric prosections, for learning cardiac gross anatomy. One hundred and eight first-year medical students participated. Two weeks prior to the teaching intervention, students completed a pretest to assess their prior knowledge and to ensure that groups were equally randomized. Students, divided into pre-existing teaching groups, were assigned to one of two conditions; "cadaver" or "ultrasound." Those in the cadaver group received teaching on the heart using prosections, whereas the ultrasound group received teaching using live ultrasound images of the heart. Immediately after teaching, students sat a post-test. Both teaching modalities increased students' test scores by similar amounts but no significant difference was found between the two conditions, suggesting that both prosections and ultrasound are equally effective methods for teaching gross anatomy of the heart. Our data support the inclusion of either cadaveric teaching or living anatomy using ultrasound within the undergraduate anatomy curriculum, and further work is needed to compare the additive effect of the two modalities.  相似文献   

20.
Neuroanatomy education is a challenging field which could benefit from modern innovations, such as augmented reality (AR) applications. This study investigates the differences on test scores, cognitive load, and motivation after neuroanatomy learning using AR applications or using cross-sections of the brain. Prior to two practical assignments, a pretest (extended matching questions, double-choice questions and a test on cross-sectional anatomy) and a mental rotation test (MRT) were completed. Sex and MRT scores were used to stratify students over the two groups. The two practical assignments were designed to study (1) general brain anatomy and (2) subcortical structures. Subsequently, participants completed a posttest similar to the pretest and a motivational questionnaire. Finally, a focus group interview was conducted to appraise participants’ perceptions. Medical and biomedical students (n = 31); 19 males (61.3%) and 12 females (38.7%), mean age 19.2 ± 1.7 years participated in this experiment. Students who worked with cross-sections (n = 16) showed significantly more improvement on test scores than students who worked with GreyMapp-AR (P = 0.035) (n = 15). Further analysis showed that this difference was primarily caused by significant improvement on the cross-sectional questions. Students in the cross-section group, moreover, experienced a significantly higher germane (P = 0.009) and extraneous cognitive load (P = 0.016) than students in the GreyMapp-AR group. No significant differences were found in motivational scores. To conclude, this study suggests that AR applications can play a role in future anatomy education as an add-on educational tool, especially in learning three-dimensional relations of anatomical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号