首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大家都很熟悉等腰三角形的性质:三线合一.鉴于很多数学定理都有逆定理,于是学生们只要看见条件中出现高线、中线、角平分线中的某两条重合,就用三线合一来说明要解决的问题,以致发生思维混乱,讲不清道理,为此我想何不干脆探讨“三线合一”的逆命题是否成立呢?为学生澄清根源,拨乱反正.  相似文献   

2.
<正>“三线合一”是指在等腰三角形中底边上的高、中线和顶角的平分线重合,用数学符号可以归纳为:在△ABC中,AB=AC,D是BC上的一点,满足下面三个条件中的一个,另外两个条件也成立:(1)AD⊥BD;(2)∠BAD=∠CAD;(3)BD=CD.由此可知等腰三角形的“三线合一”是一个“万能”的性质定理,当同学们解答等腰三角形问题时能够用其证明线段相等、两角相等、两线互相垂直等.一、利用“三线合一”性质解答三角形问题的注意事项因为“三线合一”是等腰三角形的重要性质,所以其使用前提是在等腰三角形中,如果是其他三角形不能使用“三线合一”性质.如果几何问题中没有明确给出三角形是等腰三角形,可以添加辅助线构造等腰三角形,然后再使用“三线合一”性质.  相似文献   

3.
等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线重合(简称三线合一).我们常通过三角形全等构造等腰三角形,从而运用三线合一的性质证明角相等、两条线段相等、两条直线垂直.[第一段]  相似文献   

4.
<正>众所周知,等腰三角形有一个重要的性质,即等腰三角形顶角的平分线、底边上的中线与底边上的高互相重合.这就是等腰三角形的“三线合一”性质.基于此,我们可以巧用等腰三角形“三线合一”的性质来证明三角形中线段相等和两角相等的相关问题.本篇文章主要介绍了在初中数学阶段应如何巧借等腰三角形“三线合一”性质来解决数学问题.一、利用“三线合一”性质解决线段的有关问题例1如图1,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,且PM=PN,若MN=2,则ON的长为().  相似文献   

5.
等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合.这就是等腰三角形的“三线合一”定理.这个定理可分解为下面三个定理:(1)在△ABC中,若AB=AC,AD是顶角平分线,则ADBC,BD=DC.(2)在△ABC中,若AB=AC,AD是底边上的高,则BD=DC,∠DAB=∠DAC.(3)在△ABC中,若AB=AC,AD是底边上的中线,则AD上BC,∠DAB=∠DAC.由此可知,等腰三角形“三线合一”定理有三个基本功能:(1)利用“三线合一”定理可以证明两条线段相等.(2)利用“三线合一”定理…  相似文献   

6.
“三线合一”是等腰三角形的一个重要性质.由等腰三角形“三线合一”可得到等腰三角形的顶角平分线、底边上的高线、底边上的中线所在的直线与底边上的垂直平分线和等腰三角形的对称轴“五线合一”;由等腰三角形的这些性质还可以得到等腰三角形的外心、内心、重心、垂心“四心共线”,  相似文献   

7.
<正>一、构造三线合一妙解几何趣题等腰三角形顶角的平分线、底边上的中线、底边上的高重合,俗称"三线合一"边三角形每一个角的平分线,和它对边的中线,以及这边上的高都重合,也叫三线合一.例1如图1,在矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于点E,已知AB=3,AD=33(1/2),求△AEO的面积.  相似文献   

8.
等腰三角形底边上的中线、底边上的高和顶角的平分线这三条线重合,我们把这称为“三线合一”.利用“三线合一”证明有关等腰三角形的题目,常能事半功倍. 例1 已知:如图1,在△ABC中,AB=AC,∠BAC=20°,在AB上取AD=BC,连结CD.求∠ACD的度数. 分析:容易证明,∠ABC=∠ACB=12(  相似文献   

9.
“三线合一”是等腰三角形特有的性质,即等腰三角形底边上的中线、顶角的平分线、底边上的高线互相重合.  相似文献   

10.
等腰三角形三线合一的性质是平面几何中应用较为广泛的一个性质.反之,对于一个三角形,只要二线合一(一边上的高与中线合一,或一内角的平分线与对边的高合一,或一内角的平分线与对边的中线合一),也可推导出它是等腰三角形,  相似文献   

11.
1问题的提出同学们都知道等腰三角形的三线合一的性质,可是很少有人研究过它的逆命题.某同学经过深思熟虑,得出结论:当一个三角形一边上的高和这  相似文献   

12.
同学们知道,等腰三角形底边上中线、高线及顶角的角平分线是互相重合的,我们把等腰三角形的这一性质简称为“三线合一”。一、利用“三线合一”的性质寻找证题途径例1已知:如图1,在△ABC中,AB=AC,BD是AC边上的高。求证:∠CBD=21∠A图1分析:当题目中有等腰三角形的已知条件时,常常作出底边上的中线、高线或者顶角的角平分线中的一条,利用等腰三角形“三线合一”的性质寻找证题途径。证明:作AE⊥BC于E,则∠1 ∠C=90°∵BD是AC边上的高图2∴∠CBD ∠C=90°∴∠1=∠CBD又∵AB=ACAE⊥BC∴∠1=12∠BAC∴∠CBD=21∠BAC变式练习…  相似文献   

13.
等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线重合(简称三线合一).我们常通过三角形全等构造等腰三角形,从而运用三  相似文献   

14.
等腰三角形的顶角平分线、底边上的中线。底边上的高互相重合.等腰三角形的这一性质称“三线合一”定理.这个定理可分解为三个定理:(1)在△ABC中,AB=AC.若AD是角平分线,则AD⊥BC且BD=DC;(2)在△ABC中,AB=AC.若AD是中线,则AD⊥BC且/DAB=/DAC;(3)在△ABC中,AB=AC.若AD是高,则BD=DC且/DAB=/DAC.由此可知,‘“三线合一”定理有三个基本功能:回.证明线段相等;2.证明两角相等;3.证明两条线段(或直线)互相垂直.下面举例说明“三线合一”定理在证题中的应用.侈IJI女日图1,在thA…  相似文献   

15.
中点的畅想     
中点,特别是线段的中点是几何图形中的一个特殊点,直角三角形斜边中线、等腰三角形三线合一、中心对称图形、三角形中位线和梯形中位线等都有其身影.那么,如何恰当地利用中点和处理与中点有关的问题呢?关键在于:充分挖掘中点所包含的信息,合理联想构造含中点的图形来解决问题.  相似文献   

16.
等腰三角形有一个重要的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称为“三线合一”.经过证明发现:如果三角形中一条线段既是角平分线又是高,或者既是角平分线又是中线,或者既是中线又是高,那么这个三角形是等腰三角形.即一条线段具有双重“身份”,那么它所在的三角形就是等腰三角形.这个简单的结论可以利用在许多几何问题中,通过找出隐藏的等腰三角形,根据“三线合一”来证明.下面举几个典型的例题:  相似文献   

17.
等腰三角形的“三线合一”性质是:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,它包含三个真命题。  相似文献   

18.
<正>在数学的知识体系和思想方法中,处处蕴含着辨证唯物主义的哲学思想.那么,在课堂教学中,如何渗透数学中的辨证思想,使学生形成良好的数学思维品质?这是笔者一直思考和实践的内容.现以等腰三角形中的三线合一定理为例进行再思考.一、用"矛盾是普遍存在"的观点发现问题  相似文献   

19.
我们已经学过了“等腰三角形的顶角平分线、底边上的高、底边上的中线相互重合”这一性质,通常简称为“三线合一”.反过来,我们会发现“两线合一得等腰”,即:  相似文献   

20.
“三线合一”定理是等腰三角形所固有的性质,即等腰三角形底边上的中线、顶角的平分线、底边上的高线互相重合.该定理其实包括如下三方面的内容:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号