首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

2.
《中学数学月刊》1998年第5期刊登了陶明斌老师的文章《一道俄罗斯数学竞赛题的复数证法》,文中给出证法十分简捷。本文利用重心坐标公式给出一种更简捷的证法。 题目 已知α,β,γ夕,满足不等式sinβ Sinβ Sinγ≥2,试证:cosα cosβ cosγ≤√5。(第21届俄罗斯中学数学竞赛第四阶段十一年级第5题) 证 如图所示,显然点A(cosα,sinα),B(cosβ,sinβ)C(cosγ,sinγ)都在单位圆x~2 y~2=1上, 由三角形的重心  相似文献   

3.
《上海中学数学》1995年第3期“数学问题与解答”栏中给出了如下一道问题: 已知α、β、γ为锐角,且sin~2α sin~2β sin~2γ=1。 求(cosα cosβ cosγ)/(sinα sinβ sinγ)的最小值。 本文给出此题的两个简捷解法,供参考。  相似文献   

4.
第21届俄罗斯中学生数学竞赛(第四阶段)十一年级第5题:已知角α,β,γ满足不等式sinα sinβ sinγ≥2,证明:cosα cosβ cosγ≤5~(1/2).文[1]另辟蹊径,提供了一种简明直观的几何证法,并进一步推广得如下的:定理 设m∈R~ ,n∈N,n≥2,m≤n,角α_1,α_2,α_3,…,α_n满足不等式sinα_1 sinα_2 … sinα_n≥m,-(n~2-m~2)/(1/2)≤  相似文献   

5.
许多教学参考资料中不少例题和习题 ,题中概念少 ,难度不大 ,但往往蕴藏着丰富的内容 .教学中若引导学生重视和钻研这些习题 ,不但能帮助学生全面掌握基础知识和基本技能 ,而且能培养学生的研究能力 .下举一例 ,望诸君赐教 .长方体的一条对角线与各个面所成的角分别为α、β、γ,求证 :cos2 α+cos2 β +cos2 γ =2 .本题证明 ,不再赘述 .在此前提下 ,我们从两个方面挖掘潜能 .一、多角度思考 ,培养发现问题的能力1.求证 :sinα +sinβ +sinγ≤3( cosα +cosβ +cosγ)≤ 6证明 :∵ cos2α +cos2β +cos2γ =2 ,∴ sin2 α +sin2 β +sin2 …  相似文献   

6.
下面以三角中的几个基本公式 (定理 )的证明为例 ,谈谈向量基础知识在解题中的灵活应用 ,望能增添同学们学习向量知识的兴趣 .【例 1】 证明cos(α+β) =cosαcosβ-sinαsinβ .课本上采用解析法证明这一公式 ,学习向量后 ,运用平面向量的数量积 (内积 )证明公式显得十分简单 ,这种灵活运用新知识解决问题的思想方法毫无疑义是符合新教材编写精神的 .证 :在单位圆O中 ,设∠P1 Ox =α , ∠P2 Ox =-β ,则P1 ,P2 坐标为P1 (cosα ,sinα) ,P2 (cosβ ,sin( -β) ) .即OP1 =(cosα ,sinα) , OP2 =(cosβ ,-sinβ) .∵∠P1 OP2 =α …  相似文献   

7.
参考公式 :三角函数的积化和差公式sinαcosβ =12 [sin(α+ β) +sin(α -β) ]cosαsinβ=12 [sin(α+ β) -sin(α-β) ]cosαcosβ =12 [cos(α + β) +cos(α-β) ]sinαsinβ =-12 [cos(α + β) -cos(α -β) ]正棱台、圆台的侧面积公式S台侧 =12 (c′+c)l,其中c′、c分别表示上、下底面周长 ,l表示斜高或母线长 .球的体积公式V球 =43 πR3,其中R表示球的半径一、选择题 (本大题共 12小题 ,每题 5分 ,共 60分 ,在每小题给出的 4个选项中 ,只有一项是符合题目要求的 )1.(文 )直线 y=2x关于x轴对称的直线方程为 (   )   (A) y=-1…  相似文献   

8.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

9.
题若α,β,γ∈R,求u=sin(α-β) sin(β-γ) sin(γ-α)的最大值和最小值.在本刊2006年第1期第40页上,应用4元均值不等式给出了该题的一种初等解法,其实,逆向利用行列式,可以给出该问题的一种巧思妙解.解u=sinαcosβ sinβcosγ sinγcosα-cosαsinβ-cosβsinγ-cosγsinα=sinαcosα1sinβcosβ1sinγcosγ1,构造点A(sinα,cosα),B(sinβ,cosβ),C(sinγ,cosγ),则|u|=2S△ABC. 1很明显,上面的三点A、B、C都在单位圆:x2 y2=1上.因为圆内接三角形,以正三角形的面积为最大,所以当△ABC为正三角形时,S△ABC取得最大值343,于是|u…  相似文献   

10.
文 [1]在证明一类三角不等式的过程中 ,灵活地运用凸多边形的性质 ,数形结合的思想方法 ,化难为易 ,化隐为显 ,使不等式得到巧妙 ,简明的证明 .让读者认识到了特殊图形的魅力 .读后深受启发 ,笔者对该文例题作了进一步的思考 ,发现换一个角度 ,用方差来证明、也能体现解题过程的简捷明了 ,可与构图法殊途同归 ,相映成趣 .下面给出该文 5个问题的构造方差证明法 ,供同行参考 .问题 1 已知角α、β、γ满足条件 sinα +sinβ + sinγ=2 ,试证 :| cosα+ cosβ + cosγ|≤5 .证明 :因为 sinα,sinβ,sinγ的方差为S2 =13 [sin2α+ sin2β + s…  相似文献   

11.
题目已知α、β为锐角,且满足sin2(α β)=sin2α sin2β,求证α β=90°.常见的解法如下.证法一:(反证法)若α β>90°,则α>90°-βsinα>sin(90°-β)=cosβ.从而sin2α sin2β>cos2β sin2β=1,得sin2(α β)>1,矛盾.  相似文献   

12.
本文例述带有特定附加条件的三角求值问题 ,给出几种常用的基本对策 .一、先定后变——顺其自然例 1 设 cos (α - β2 ) =- 19,sin ( α2 -β) =23,且 π2 <α <π,0 <β <π2 ,求 cos (α +β)的值 .评析 :一般三角条件求值大都角多且杂 ,这就不要盲目对已知变换 ,而是分析已知与所求 ,确定好基角 .比如本题已知角为α - β2 ,α2 -β,可求为 :α+β= (α - β2 ) - ( α2 -β) ,于是据条件只须求出 sin (α- β2 ) ,cos ( α2 -β)的值即可 .答案 :cos(α +β) =- 2 3972 9.二、代入变形——酌情而定例 2 已知 cos 2θ =2 - 1,求 sin4 …  相似文献   

13.
一、三角对偶式例1。化简cos~2α cos~2β-2cosαcosβcos(α β). 设原式为A,设B=sin~2α sin~2β 2sinαsinβcos(α β),则A B=2-2cos~2(α β)=2sin(α β),A-B=cos2α cos2β-2cos(α β)·cos(α-β)=0,故A=B=2sin~2(α β). 类似计算cos~2A cos~2B cos~2C 2cosAcosBcosC(A B C=π),Cos~2θ cos~2(θ 120°) cos~2(θ-120°)等.  相似文献   

14.
【题】已知ccooss42βα ssiinn42βα=1,求证:ccooss42αβ ssiinn24αβ=1.法1(三角换元)∵ccooss2βα2 ssiinn2βα2=1,∴可设ccooss2βα=sinφ,ssiinn2βα=cosφ,则sinφcosβ cosφsinβ=cos2α sin2α=1,∴sin(φ β)=1,∴φ β=2π 2kπ,k∈Z,∴sinφ=sin2π-β 2kπ=cosβ,同理,cosφ=sinβ,∴cos2α=cos2β,sin2α=sin2β,∴ccooss42αβ ssiinn24αβ=cos2β sin2β=1.法2(巧构直线与圆相切模型)由已知Accooss2βα,ssiinn2βα,B(cosβ,sinβ)都在单位圆x2 y2=1上,圆x2 y2=1过点B的切线方程l是cosβx sinβy=1,A点也满足此…  相似文献   

15.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

16.
在一些参考资料上,经常可以看到这样一道三角题:题目:已知 sinα sinβ=2~(1/2)/2,求 cosα cosβ的取值范围.其解法为:设 cosα cosβ=x,则(sinα sinβ)~2 (cosα cosβ)~2=1/2 x~2,即2 2cos(α-β)=1/2 x~2,∴x~2=3/2 2cos(α-β).∵-1  相似文献   

17.
数学公式的记忆和应用,是学习和应用数学知识的一个重要环节。如何采用科学方法,达到理想的效果,是一个重要问题。本文谈一下三角公式中的和差化积与积化和差公式的应用方法。 在三角函数的加法定理及其推论中,有一组基本公式,即 sin(α β)=sinαcosβ cosαsinβ (1) sin(α-β)=sinαcosβ-cosαsinβ (2) cos(α β)=cosαcosβ-sinαsinβ (3) cos(α-β)=cosαcosβ sinαsinβ (4)在这四个公式的基础上,便能推出一组二倍  相似文献   

18.
具有圆的几何意义的数学问题,如能构造出该圆,那么问题便会迎刃而解,请看: 一、求值例1 已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求cos2α+cos2β+cos2γ的值. 解:构造一直角坐标系,设三点P(cosα,sinα)、Q(cosβ,sinβ)、R(cosγ,sinγ),由给  相似文献   

19.
在三角变换中,对于同角三角函数习惯于把sin2α cos2α化简为1,下面举例说明之.【例1】 求证1-sin6α-cos6α1-sin4α-cos4α=32分析:①易见要解决本题,只需“装腔作势”地把左边化简,且化简的结果为32②注意到左边分子、分母的次数分别为6次、4 次, 故对于分子中的“1”可代换成(sin2α cos2α)3,对于分母中的“1”代换成(sin2α cos2α)2;这样可使分子、分母都化成齐次,有利于问题的解决.证明:左边=(cos2α sin2α)3 -sin6α-cos6α(cos2α sin2α)2 -sin4α-cos4α=3(sin4α·cos2α sin2α·cos4α)2sin2α·cos2α=3sin2α·cos2…  相似文献   

20.
一、选择题(每小题5分,共60分)11“θ=60°”是“tanθ=3”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分且必要条件(D)既不充分也不必要条件21cos(-100°)=m,则tan600°=()(A)1-m2m(B)-1-m2m(C)1 m2m(D)-1 m2m31α是第三象限角且sinα=-2425,则tanα2的值为()(A)43(B)34(C)-43(D)-3441cos(20° α)cos(25° α)-(cos70°-α)sin(25°-α)的值为()(A)-22(B)22(C)-1(D)151在△ABC中tanA tanB 3=3tanA·tanB且sinAcosA=34,则△ABC是()(A)等腰三角形(B)直角三角形(C)等腰直角三角形(D)等边三角形61sinα sinβ sinγ=0,cos…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号