首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

2.
求一个函数 f(x)的极值,首先应该找出可疑点 x_0(驻点和不可导点),其次,要判断f′(x)在 x_0附近的符号。在 x_0左、右 f′(x)变号,则 x_0为极值点。若 f′(x)自 x_0左至右符号依次为“+、-”,则 x_0为极大值点;若依次为“-、+”,则 x_0为极小值点。那么,如何判断 x_0附近 f′(x)的符号是关键,为此,本文给出一种方法,供读者参考。  相似文献   

3.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

4.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

5.
我们知道,高等数学中对三次函数极值是这样来求的: 设f(x)=x~3 px~2 qx r,则f′(x)=3x~2 2px q. 令f′(x)=0. ①当p~2>3q时,解得由成 当x由小到大经过x_1时,f′(x)由正变负,经过x_2时,f′(x)由负变正. ∴y极大=f(x_1),y极小=f(x_2). ②当P~2=3q时,解得x_1=x_2=-p/3,此时f′(x)≥0恒成立,x由小到大经过-p/3时,f′(x)不变号,故-p/3不是极值点。  相似文献   

6.
现行中学课本《微积分初步(甲种本)》(以下简称“课本”)在“二阶导数的应用”一节导出了如下的Taylor公式 f(x)=f(x_0)+f′(x_0)(x-x_0)+1/2f″(§)(x-x_0)~2 (1) 其中f(x)在以x_0,x为端点的闭区间上有二阶导数,§在x_0与x之间。课本利用公式讨论了函数的极值和曲线的凹凸性。本文将介绍几个用它证明不等式的例子。  相似文献   

7.
读了《中学数学教学》1982年第一期《应用导数和微分知识证明不等式》一文,很受启发。对文中所讨论的第二个问题“应用函数增减性的判别法证明不等式”作点补充。如果在给定区间(a、b)上不能判定一阶导数的符号,则可进一步求出二阶导数,从判别二阶导数的符号来判定一阶导数的符号,进而判定函数的增减性,得证所要证明的不等式。下面举例说明。例一若x〉0,则e~x〉1+x+1/2x~2。分析要证e~x〉1+x+1/2x~2,只要证e~x-1-x-1/2x~2〉0。令f(x)=e~x-1-x-1/2x~2,则f′(x)=e~x-1-x,在x〉0时,f′(x)的符  相似文献   

8.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

9.
赵中华 《中国考试》2004,(10):34-35
用导数研究函数的单调性,利用的是可导函数的单调性与其导数的关系:设函数f′(x)在某个区间内可导,如果f′(x)>0,则f′(x)为增函数;如果f′(x)<0,则f′(x)为减函数。利用导数的方法研究函数单调性的试题,所给的函数解析式中往往含有字母参数,求导后f′(x)的解析式是含有字母参数的解析式,于是在研究f′(x)>0或f′(x)<0时,就转化为研究含有字母参数的不等式,这种类型的问题  相似文献   

10.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

11.
<正>一、单一函数类1.恒成立问题例1已知函数f(x)=ax~3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.(1)求f(x)的单调区间和极大值;(2)证明对任意x_1,x_2∈[-1,1],不等式|f(x_1)-f(x_2)|<4恒成立.分析本题是同一函数的最值问题,只需求出函数f(x)在[-1,1]上的最值(或范  相似文献   

12.
近年来的高考及各种级别的考试,经常遇到用幂函数、指数函数及对数函数的单调性来解决的数学问题。高中代数课本通过图象的观察给出了这三种基本初等函数的单调性,但内容分散,情况复杂,学生们对此记忆效果及应用的准确性较差。本文把这三种涵数的单调性就其形式统一起来,这样便于记忆,便于应用。可以加快解题速度,提高解题的准确性。 课本给出的幂函数f(x)=x~n(n是有理数且n≠0,x>0)的单调性是: 当n>0时,在第一象限内,函数值随着x的增大而增大;当n<0时,在第一象限内,函数随着x的增大而减小。 两种情况形式相象,难以准确记忆及准确应用,现把它改写为下列不等式的形式: (1)若n>0,x_1>x_2,则f(x_1)>f(x_2); (2)若n>0,x_1x_2,则f(x_1)f(x_2);  相似文献   

13.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

14.
在判断函数的单调性和求函数的极值时,常常需要判断其导函数在某区间的符号,通常的方法是解不等式,但往往很麻烦困难。如例1 求函数f(x)=e~x+e~(-x)+2cosx的极值。解 f′(x)=e~x-e~(-x)-2sinx,解方程 e~x-e~(-x)-2sinx=0得唯一的驻点为x=0,此时f′(x)在x=0附近的函数值符号不易确定,需求高阶导数才能能判定f(x)在x=0处是否取极值。又如  相似文献   

15.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

16.
在新课标中,应用导数研究函数的单调性进而证明不等式是近些年来高考中出现的新热点.导数为证明提供了“金钥匙”,解题如行云流水,简捷明快.现举几例,予以说明.例1若x>-1,证明:In(x+1)≤x.证明:令f(x)=In(x+1)-x,则f(x)=1/(x+1)-1.令f′(x)=0,解得x=0.当-1<x<0时,f(x)>0,所以f(x)在区间(-1,0)上单调递增.当x>0时,f(x)<0,所以f(x)在区间(0,+∞)上单调递减.所以,当x>-1时,f(x)=In(x+1)-x≤f(0)=0,即In(x+1)≤x.方法步骤:(1)移项,使不等式一边为0,构造辅助函数;  相似文献   

17.
我们知道,不等式的证明方法繁多,各种方法各显其能,一般来说可分为两大类:一类是初等方法,另一类是高等方法。下面浅谈数学分析中所诱导出关于不等式的若干证法。一、单调性:定理:区间I上的可导函数f(x),如果在I内部的x恒有f′(x)>O)(n时(m,n均为自然数)(1+n)m>(1+m)~n  相似文献   

18.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

19.
本文着重说明应用微分中值定理证明不等式时,函数f(x)的选取方法,介绍一些用初等数学方法不易证明的或证明步骤较繁的不等式,而用微分中值定理可以简捷地解决的情形,其中关键是要选择好函数f(x)。微分中值定理是:“若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在开区间(a,b)内至少有一点ξ,使得 f′(ξ)=(f(b)-f(a))/(b-a)”。用微分中值定理证明不等式的主要依据是选定符合微分中值定理条件的函数f(x)后,若在所讨论的区间内有m相似文献   

20.
文[1]给出了柯西中值定理的一个新证法。该证法一反常规,不是利用罗尔定理进行证明,而是以文献[2]给出的: (1°)予备定理 设函数f(x)在点x_o处有有穷导数。若这导数f′(x_o)>0f′(x_o)<0),则当x取右方充分接近于x_o的数值时就有f(x)>f(x_o)(f(x)f(x_o))。 (2°)达布定理 若函数f(x)在区间[a,b]上有有穷导数,则函数f′(x)必至少有一次取得介于f′(a)及f′(b)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号