首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simulated cricket batting innings was developed to replicate the physical demands of scoring a century during One-Day International cricket. The simulated innings requires running-between-the-wickets across six 5-over stages, each of 21 min duration. To validate whether the simulated batting innings is reflective of One-Day International batting, movement patterns were collected using a global positioning system (GPS) and compared with previous research. In addition, indicators of physical strain were recorded (heart rate, jump heights, sweat loss, tympanic temperature). Nine club cricketers (mean ± s: age 20 ± 3 years; body mass 79.5 ± 7.9 kg) performed the simulated innings outdoors. There was a moderate trend for distance covered in the simulated innings to be less than that during One-Day batting (2171 ± 157 vs. 2476 ± 631 m · h?1; effect size = 0.78). This difference was largely explained by a strong trend for less distance covered walking in the simulated innings than in One-Day batting (1359 ± 157 vs. 1604 ± 438 m · h?1; effect size = 1.61). However, there was a marked trend for distance covered both striding and sprinting to be greater in the simulated innings than in One-Day batting (effect size > 1.2). Practically, the simulated batting innings may be used for match-realistic physical training and as a research protocol to assess the demands of prolonged, high-intensity cricket batting.  相似文献   

2.
The reliability (test-retest) of running-between-the-wickets times and skill performance was assessed during a batting exercise (BATEX) simulation of 2 h 20 min duration that requires intermittent shuttle running. In addition, performance and physiological responses (heart rate, sweat rate, rating of perceived exertion, blood lactate concentration) were compared between high- and low-grade district club batsmen (n = 22, mean ± s: age 20 ± 2 years, mass 73.4 ± 8.5 kg). Running-between-the-wickets performance was assessed with an infra-red timing system (Swift, Australia) by sampling a 5-m time for the middle section of the straight-line sprints (singles) and the time to complete 5 m in and out of the turn (5-0-5-m turn time). Skill performance was rated as a percentage for good bat-ball contacts. Coefficients of variation for running-between-the-wickets performance and percentage of good bat-ball contacts were both <5%. Percentage of good bat-ball contacts was greater in the high- than low-grade batsmen (70 ± 8 vs. 58 ± 9%, P = 0.01). All other variables were similar between grades. Running-between-the-wickets and skill-performance measures during the BATEX simulation were reliable, thus it can be used in future research.  相似文献   

3.
Abstract

A simulated cricket batting innings was developed to replicate the physical demands of scoring a century during One-Day International cricket. The simulated innings requires running-between-the-wickets across six 5-over stages, each of 21 min duration. To validate whether the simulated batting innings is reflective of One-Day International batting, movement patterns were collected using a global positioning system (GPS) and compared with previous research. In addition, indicators of physical strain were recorded (heart rate, jump heights, sweat loss, tympanic temperature). Nine club cricketers (mean ± s: age 20 ± 3 years; body mass 79.5 ± 7.9 kg) performed the simulated innings outdoors. There was a moderate trend for distance covered in the simulated innings to be less than that during One-Day batting (2171 ± 157 vs. 2476 ± 631 m · h?1; effect size = 0.78). This difference was largely explained by a strong trend for less distance covered walking in the simulated innings than in One-Day batting (1359 ± 157 vs. 1604 ± 438 m · h?1; effect size = 1.61). However, there was a marked trend for distance covered both striding and sprinting to be greater in the simulated innings than in One-Day batting (effect size > 1.2). Practically, the simulated batting innings may be used for match-realistic physical training and as a research protocol to assess the demands of prolonged, high-intensity cricket batting.  相似文献   

4.
The aim of this study was to compare a batsman's running and turning speed during three runs while wearing either traditional batting pads or one of two models of newly designed cricket batting pads. Fifteen cricketers participated. The running and turning speeds were measured on three different days with players using the three pairs of batting pads for each trial in random order. The weights of the pads were 1.85 kg, 1.70 kg and 1.30 kg for P1, P2 and P3 respectively. Each player had to run three runs (3 x 17.68m), with the times recorded at the completion of each run, as well as the time to cover the distance from 5 m before and after the turn at the end of the first run. The fastest time from two trials for each pair of pads was retained for analysis. An analysis of variance (ANOVA) with repeated measures was used to determine the differences between the mean times of the three trials. The results showed no significant differences between the types of batting pads and the time to complete the run-three-runs test (P1 = 10.67 +/- 0.48 s; P2 = 10.67 +/- 0.43; P3 = 10.69 +/- 0.44 s), the turning time (P1 = 2.34 +/- 0.18 s; P2 = 2.32 +/- 0.18 s; P3 = 2.35 +/- 0.19 s) and to complete the third run (P1 = 3.49 +/- 0.44 s; P2 = 3.53 +/- 0.34 s; P3 = 3.51 +/- 0.36 s). Of the 45 trials of three runs used for analysis, P1 recorded the fastest time on 16 trials (36%), P2 on 19 trials (42%) and P3 on 10 trials (22%). The results showed no significant differences in the running or turning speeds, although there may be some practical relevance to using the newly designed cricket batting pads.  相似文献   

5.
The aim of this study was to compare a batsman's running and turning speed during three runs while wearing either traditional batting pads or one of two models of newly designed cricket batting pads. Fifteen cricketers participated. The running and turning speeds were measured on three different days with players using the three pairs of batting pads for each trial in random order. The weights of the pads were 1.85 kg, 1.70 kg and 1.30 kg for P1, P2 and P3 respectively. Each player had to run three runs (3 × 17.68m), with the times recorded at the completion of each run, as well as the time to cover the distance from 5 m before and after the turn at the end of the first run. The fastest time from two trials for each pair of pads was retained for analysis. An analysis of variance (ANOVA) with repeated measures was used to determine the differences between the mean times of the three trials. The results showed no significant differences between the types of batting pads and the time to complete the run‐three‐runs test (P1 = 10.67 ± 0.48 s; P2 = 10.67 ± 0.43; P3 = 10.69 ± 0.44 s), the turning time (P1 = 2.34 ± 0.18 s; P2 = 2.32 ± 0.18 s; P3 = 2.35 ± 0.19 s) and to complete the third run (P1 = 3.49 ± 0.44 s; P2 = 3.53 ± 0.34 s; P3 = 3.51 ± 0.36 s). Of the 45 trials of three runs used for analysis, P, recorded the fastest time on 16 trials (36%), P2 on 19 trials (42%) and P3 on 10 trials (22%). The results showed no significant differences in the running or turning speeds, although there may be some practical relevance to using the newly designed cricket batting pads.  相似文献   

6.
In this review, we critically evaluate the scientific research into the morphology and physiology of cricket batsmen. We consider all aspects of the motor control of this skill, in the context of research into dynamic interceptive actions, the biomechanics (kinematics and kinetics) of the various phases of batting strokes and injuries to batsmen. Some attention is also devoted to batting equipment and to psychological factors in batting. Because of the lack of published scientific research into women's cricket, this review focuses on the men's game and covers research on batsmen of various playing standards. For the future, we see as a high priority research into injury mechanisms, rather than simple injury statistics, and the role of cricket equipment design in injury prevention. A second priority is for multi- or inter-disciplinary research, linking the biomechanics of batting to the underlying motor control of the movements and the effect of environmental information. Biomechanical studies of the variability of the batsman's movements are needed, and these should be related to the compensatory variability proposal of ecological psychology. Clearly, there is also a need for scientific research into batting in women's cricket, which has been inadequately researched to date.  相似文献   

7.
To determine whether the helmets currently used by cricket batsmen offer sufficient protection against impacts of a cricket ball, the impact absorption characteristics of six helmets were measured using the drop test at an impact velocity equivalent to a cricket ball with a release speed of 160 km·h-1 (44.4 m·s -1 ). An accelerometer transducer attached to a 5.0 kg striker was dropped from a height of 3.14 m onto the batting helmets to measure the impact characteristics at the three different impact sites:right temple, forehead and back of the helmet. These data were further expressed as a percentage above (-) or below (+) the recommended safety standard of 300 g . The results indicate that the force absorption characteristics of the helmets showed inter- and intra-helmet variations, with 14 of the 18 impact sites (66.7%) assessed meeting the recommended safety standards. Helmets 1, 2 and 4 succeeded in meeting the safety standards at all impact sites; helmets 5 and 6 both failed at the back and forehead, while helmet 3 failed at all impact sites. These differences were due to the structure and composition of the inner protective layer of the helmets. The helmets that succeeded in meeting the standards were made with a moulded polystyrene insert, a heat-formed ethylene vinyl acetate (EVA) insert, or EVA with a relatively high density that allows a minimal amount of movement of the helmet at ball impact.  相似文献   

8.
The impact absorption characteristics of cricket batting helmets   总被引:1,自引:0,他引:1  
To determine whether the helmets currently used by cricket batsmen offer sufficient protection against impacts of a cricket ball, the impact absorption characteristics of six helmets were measured using the drop test at an impact velocity equivalent to a cricket ball with a release speed of 160 km x h(-1) (44.4 m x s(-1)). An accelerometer transducer attached to a 5.0 kg striker was dropped from a height of 3.14 m onto the batting helmets to measure the impact characteristics at the three different impact sites: right temple, forehead and back of the helmet. These data were further expressed as a percentage above (-) or below (+) the recommended safety standard of 300 g. The results indicate that the force absorption characteristics of the helmets showed inter- and intra-helmet variations, with 14 of the 18 impact sites (66.7%) assessed meeting the recommended safety standards. Helmets 1, 2 and 4 succeeded in meeting the safety standards at all impact sites; helmets 5 and 6 both failed at the back and forehead, while helmet 3 failed at all impact sites. These differences were due to the structure and composition of the inner protective layer of the helmets. The helmets that succeeded in meeting the standards were made with a moulded polystyrene insert, a heat-formed ethylene vinyl acetate (EVA) insert, or EVA with a relatively high density that allows a minimal amount of movement of the helmet at ball impact.  相似文献   

9.
This review synthesises the biomechanical and skill acquisition/sport expertise literature focused on the skill of cricket batting. The literature is briefly reviewed and the major limitations, challenges, and suggested future research directions are outlined. This is designed to stimulate researchers to enhance the understanding of cricket batting biomechanics and skill acquisition and in turn assist cricket coaches develop efficacious batting skill development programmes. An interdisciplinary approach between biomechanists and skill acquisition specialists is advocated to further knowledge of the underlying processes and mechanisms of cricket batting expertise. Issues such as skill measurement, practice design, ball machines, skill transfer, the impact of Twenty/20 cricket, video simulation, and skill decomposition are discussed. The ProBatter ball machine systems are introduced along with suggestions for best practice approaches for coaches when designing batting skill development programmes.  相似文献   

10.
A cinematographic analysis of the drive off the front foot (D) and the forward defensive stroke (FD) was undertaken to establish the kinematic and kinetic factors involved in playing these strokes against medium-fast bowling. Fourteen provincial cricket batsmen were filmed at 100 Hz while batting on a turf pitch with a specially instrumented bat. Results for the drive off the front foot revealed that the movement and stroke pattern were generally supportive of the coaching literature, with the forward defensive stroke forming the basis of the drive. Certain mechanical differences, although non-significant, were evident to facilitate the attacking nature of the front foot drive and included a higher backlift (FD = 0.65 m; D = 0.74 m), later commencement of the stride (FD = 0.64 s pre-impact; D = 0.58 s pre-impact) and downswing of the bat (FD = 0.38 s pre-impact; D = 0.36 s pre-impact), a shorter front foot stride (FD = 0.72 m; D = 0.68 m) with the front foot placement taking place later (FD = 0.14 s pre-impact; D = 0.06 s pre-impact), and the back foot dragging further forward at impact (FD = 0.05 m; D = 0.10 m). The front upper limb moved as a multi-segmental series of levers, which resulted in the drive showing significantly greater (P< 0.05) peak bat horizontal velocity at 0.02 s pre-impact (FD = 3.53 +/- 3.44 m s(-1); D = 11.8 +/- 4.61 m x s(-1)) and 0.02 s post-impact (FD = 2.73 +/- 2.88 m x s(-1); D = 11.3 +/- 4.21 m x s(-1)). The drive showed a significantly greater (P < 0.05) bat-ball closing horizontal velocity (FD = 24.2 +/- 4.65 m x s(-1); D = 32.3 +/- 5.06 m x s(-1)) and post-impact ball horizontal velocity (FD = 6.85 +/- 5.12 m x s(-1); D = 19.5 +/- 2.13 m x s(-1)) than for the forward defensive stroke. The point of bat-ball contact showed nonsignificant differences, but occurred further behind the front ankle (FD = 0.09 +/- 0.17 m; D = 0.20 +/- 0.13 m), with the bat more vertical at impact (FD = 62.6 +/- 6.53 degrees ; D = 77.8 +/- 7.05 degrees). Significant differences (P< 0.01) occurred between the grip forces of the top and bottom hands for the two strokes, with the principal kinetic finding that the top hand plays the dominant role during the execution of the drive with the bottom hand reinforcing it at impact. Similar grip force patterns for the two strokes occurred during the initial part of the stroke, with the drive recording significantly greater (P < 0.05) forces at 0.02 s pre-impact (top hand: FD = 129 +/- 41.6 N; D = 199 +/- 40.9 N; bottom hand: FD = 52.2 +/- 16.9 N; D = 91.8 +/- 41.1 N), at impact (top hand: FD = 124 +/- 29.3 N; D = 158 +/- 56.2 N; bottom hand: FD = 67.1 +/- 21.5 N; D = 86.2 +/- 58.2 N) and 0.02 s post-impact (top hand: FD = 111 +/- 22.2 N; D = 126 +/- 28.5 N; bottom hand: FD = 65.5 +/- 26.9 N; D = 82.4 +/- 28.6 N).  相似文献   

11.
A cinematographic analysis of the drive off the front foot (D) and the forward defensive stroke (FD) was undertaken to establish the kinematic and kinetic factors involved in playing these strokes against medium-fast bowling. Fourteen provincial cricket batsmen were filmed at 100 Hz while batting on a turf pitch with a specially instrumented bat. Results for the drive off the front foot revealed that the movement and stroke pattern were generally supportive of the coaching literature, with the forward defensive stroke forming the basis of the drive. Certain mechanical differences, although non-significant, were evident to facilitate the attacking nature of the front foot drive and included a higher backlift (FD = 0.65 m; D = 0.74 m), later commencement of the stride (FD = 0.64 s pre-impact; D = 0.58 s pre-impact) and downswing of the bat (FD = 0.38 s pre-impact; D = 0.36 s pre-impact), a shorter front foot stride (FD = 0.72 m; D = 0.68 m) with the front foot placement taking place later (FD = 0.14 s pre-impact; D = 0.06 s pre-impact), and the back foot dragging further forward at impact (FD = 0.05 m; D = 0.10 m). The front upper limb moved as a multi-segmental series of levers, which resulted in the drive showing significantly greater (P < 0.05) peak bat horizontal velocity at 0.02 s preimpact (FD = 3.53 ± 3.44 m . s -1 ; D = 11.8 ± 4.61 m . s -1 ) and 0.02 s post-impact (FD = 2.73 ± 2.88 m . s -1 ; D = 11.3 ± 4.21 m . s -1 ). The drive showed a significantly greater (P < 0.05) bat-ball closing horizontal velocity (FD = 24.2 ± 4.65 m . s-1; D = 32.3 ± 5.06 m . s -1 ) and post-impact ball horizontal velocity (FD = 6.85 5.12 m . s -1 ; D = 19.5 ± 2.13 m . s -1 ) than for the forward defensive stroke. The point of bat-ball contact showed nonsignificant differences, but occurred further behind the front ankle (FD = 0.09 ± 0.17 m; D = 0.20 ± 0.13 m), with the bat more vertical at impact (FD = 62.6 ± 6.53 ; D = 77.8 ± 7.05). Significant differences (P < 0.01) occurred between the grip forces of the top and bottom hands for the two strokes, with the principal kinetic finding that the top hand plays the dominant role during the execution of the drive with the bottom hand reinforcing it at impact. Similar grip force patterns for the two strokes occurred during the initial part of the stroke, with the drive recording significantly greater (P < 0.05) forces at 0.02 s pre-impact (top hand: FD = 129 ± 41.6 N; D = 199 ± 40.9 N; bottom hand: FD = 52.2 ± 16.9 N; D = 91.8 ± 41.1 N), at impact (top hand: FD = 124 ± 29.3 N; D = 158 ± 56.2 N; bottom hand: FD = 67.1 ± 21.5 N; D = 86.2 ± 58.2 N) and 0.02 s postimpact (top hand: FD = 111 ± 22.2 N; D = 126 ± 28.5 N; bottom hand: FD = 65.5 ± 26.9 N; D = 82.4 ± 28.6 N).  相似文献   

12.
Abstract

The selection of a cricket team cannot be fair unless the best available performance measures are used. The traditional batting average can be very unrealistic, especially in the case of a small number of scores with a high proportion of not out scores. In the present study the focus is on using the most suitable measures for the selection of a team after a small number of matches had been played. Provision is made for the fact that match conditions may influence the scoring rate of batsmen. These measures are used for illustration purposes to select a team from the players who played in the International Cricket Council (ICC) Champions Trophy 2009 One-Day International (ODI) Series. It is shown how an integer programming method can be used for the selection process. The approach is that a well balanced cricket team should include different kinds of specialists, namely batsmen, bowlers, all-rounders and a wicket-keeper. A selection committee may be able to rank batsmen in order of batting ability and bowlers according to bowling ability, but when it comes to all-rounders it is not so simple. The fact that an all-rounder is, by definition, a good batsman and also a good bowler, makes it difficult to rank all-rounders. Furthermore, how many of each specialist type should be selected? The purpose of this paper is to show how integer optimisation, an objective scientific method, can be used to aid in selecting a cricket team. Guidelines are also given for the selection of a team if career performance data have to be used.  相似文献   

13.
Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.  相似文献   

14.
The surface on to which a bowler projects a ball in the game of cricket is made up of hard packed soil with sparse grass cover. This natural turf pitch is of fundamental importance to the play of the game and the quality of the surface is a prime concern of players, officials, commentators and spectators alike. A programme of research has been undertaken to identify the factors that lead to the construction of high quality cricket pitches. This work employed the technology of highspeed video analysis to monitor the performance of first class cricket pitches during county matches. A system for measuring the impact of a cricket ball on a pitch was developed, and over 3000 ball impacts analysed. This analysis enabled pitches to be characterized in terms of pace, bounce and consistency. Soil properties for the monitored pitches were identified and correlations were drawn between pitch performance and soil composition.  相似文献   

15.
New cricket bats need to be ‘knocked in’ prior to use, but just what this process does to the surface fibres of the bat is unknown and unquantified. One quantitative measurement of knock-in is the resultant surface hardness of the bat, and this paper describes knock-in tests to determine the surface hardness following differing durations of knock-in. The design of a cricket bat knock-in machine is first described. This takes the form of a cradle in which a cricket bat can be secured horizontally and then traversed at constant speeds in two mutually perpendicular directions while at the same time being struck with constant force by a cricket ball. The traverses are driven by lead screws, the motors of which can be independently switched on or off. The traverse distance can be varied with adjustable limit switches and relays that reverse the direction of rotation of the lead screws when activated. The cricket ball is attached to a rod that is lifted cyclically by a cam against a coil spring extension, and then allowed to fall under that force to impact on the bat surface. The impact (knocking-in) force was measured by a previously calibrated strain gauge attached to the rod holding the cricket ball. By judicious setting of the limit switches, selected areas of the bat surface were continuously knocked in for periods varying from 1 to 4 hours. After knocking in, the surface hardness was measured in accordance with British Standard 373 using a penetrator designed in accordance with the same standard. Analysis of the load/penetration curves shows an increase in surface hardness with knock duration. Photographs of the cell structure of the surface wood, obtained using a scanning electron microscope, show that under knock-in conditions, the wood cells collapse to form a mesh-like hardened layer which increases in hardness with increase in knock-in duration.  相似文献   

16.
In order to assess lower extremity muscle mechanical properties in athletes, power-load characteristics during multi-joint tasks are frequently examined. This work compared 6 weeks of traditional (TP) and daily-undulated (DUP) periodized loaded countermovement jumping (CMJ). 20 amateur athletes (age: 24.2 ± 2.6 years, height: 175.6 ± 7.1 cm, body mass: 71.5 ± 7.7 kg, 10 males/10 females) exercised three times weekly using maximal CMJs with loads corresponding to 0%, 15% and 30% of body mass. Prior to the training period, subjects were once-only assigned by random to either the TP or DUP training scheme. Pre-to-post training, maximal center of mass (COM) -height, -take-off velocity, -power output and -impulse were compared during CMJ with additional loads corresponding to 0–30% of body mass. ANOVA (time * group) with repeated measures revealed significant (P < 0.05) temporal gains of maximal COM-height (2–11%), -take-off velocity (1–7%), -power (2–8%) and -impulse (3–9%) over most loading conditions for TP and DUP. However, ANOVA indicated no group effects for any outcome. Independent from the periodization model, maximal power output remained statistically unchanged with increased testing loads. For short-term conditioning periods, TP and DUP were equally effective in enhancing biomechanical jumping variables under varying loading conditions.  相似文献   

17.
This study addressed the question, what should baseball players focus their attention on while batting? Less-skilled and highly skilled (college) baseball players participated in four dual-task conditions in a baseball batting simulation: two that directed attention to skill execution (skill/internal [movement of the hands] and skill/external [movement of the bat]) and two that directed attention to the environment (environmental/irrelevant [auditory tones] and environmental/external [the ball leaving the bat]). Batting performance for highly skilled players was best in the environmental/external condition and worst in the skill/internal condition. Performance of less-skilled batters was significantly better in the two skill conditions than in either of the two environmental conditions. We conclude that the optimal focus of attention for highly skilled batters is one that does not disrupt proceduralized knowledge and permits attention to the perceptual effect of the action, whereas the optimal focus of attention for less-skilled batters is one that allows attention to the step-by-step execution of the swing.  相似文献   

18.
ABSTRACT

This study examined the age-specific development of vertical jump height, straight and change-of-direction (COD) speed, and COD deficit in one-hundred and eighty-two elite soccer players from different age-categories (U15, U17, U20, and Senior). All participants were players of two distinct clubs and were undertaking different training routines, as planned by their technical staff members. For this purpose, the soccer players performed: (1) squat and countermovement jumps; (2) a maximal 20-m linear sprint speed test, and (3) the Zigzag COD test. The magnitude-based inference approach and standardized differences were used to compare the age-groups. Sprint speed at longer distances (20-m) increased progressively across the age-ranges. In contrast, speed and acceleration performances at shorter distances (5-m) were better in U15 than in the other age-categories. The COD speed did not change throughout the younger categories but presented a meaningful decrease in the Senior category. Surprisingly, despite the progressive increase in volume and intensity of neuromuscular training from younger to older categories, the COD deficit presented a gradual increase across the age-groups. It is possible that simple modulation of the strength-power training program during the maturation process is not sufficient to produce faster adult players with enhanced ability to change direction. Therefore, coaches are strongly encouraged to implement specific COD training practices to tolerate braking at increasing running speeds and appropriate volume and intensity of soccer specific training throughout the players’ specialization process.  相似文献   

19.
Abstract

The aim of this study was to examine the effects of arm-swing and sporting activity on jump height and jump height variability of countermovement jumps in adolescent students to inform correct jumping technique in different settings. Altogether, 324 students (grades 5–11) performed three countermovement jumps with bilateral arm-swings and three countermovement jumps without arm-swings on a force platform. The participants were divided into three groups based on sporting activity. The groups with the most (“active group”; more than 6 h formal athletics in a sport club per week) and least active (“sedentary group”; less than 3 h formal athletics in a sport club per week) participants were compared. Jump height was calculated for all jumps, and the best trial of three was used for further analysis. Jump height variability was indicated by the coefficient of variation over three jumps. The reliability of jump height was determined using the intra-class correlation coefficient (ICC) over three trials of each jumping technique. The reliability of jump height was very high for all conditions (ICC: 0.90–0.96). Jump height was significantly higher for countermovement jumps with than without arm-swings for both groups. Jump height in the active group was significantly greater than in the sedentary group for both jumping techniques. A significant interaction between jumping technique and sporting activity indicates a greater benefit of arm-swing in the active than in the sedentary participants. No significant differences between groups were observed for jump height variability. Jump height can be measured reliably in active and sedentary adolescent individuals for both jumping techniques. The relevant jumping technique should be chosen with respect to the context of its application and based on its suitability for the individual and task of interest.  相似文献   

20.
Modern-day cricket has experienced a shift towards limited over games, where the emphasis is on scoring runs at a rapid rate. Although the use of protective equipment in cricket is mandatory, players perceive that leg guards, in particular, can restrict their motion. The aim of this study was to determine the influence of cricket leg guards on running performance. Initial testing revealed that wearing pads significantly increased the total time taken to complete three runs by up to 0.5?s compared with running without pads (P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号