共查询到20条相似文献,搜索用时 0 毫秒
1.
Rocky Chun Chung Cheung;Jian Yang;Christian Fang;Man Fai Leung;Susan M. Bridges;George L. Tipoe; 《Anatomical sciences education》2024,17(2):379-395
Difficulty in visualizing anatomical structures has been identified as a challenge in anatomy learning and the emergence of three-dimensional printed models (3DPMs) offers a potential solution. This study evaluated the effectiveness of 3DPMs for learning the arterial supply of the head and neck region. One hundred eighty-four undergraduate medical students were randomly assigned to one of four learning modalities including wet specimen, digital model, 3DPM, and textbook image. Posttest scores indicated that all four modalities supported participants' knowledge acquisition, most significantly in the wet specimen group. While the participants rated 3DPMs lower for helping correct identification of structures than wet specimens, they praised 3DPMs for their ability to demonstrate topographical relationships between the arterial supply and adjacent structures. The data further suggested that the biggest limitation of the 3DPMs was their simplicity, thus making it more difficult for users to recognize the equivalent structures on the wet specimens. It was concluded that future designs of 3DPMs will need to consider the balance between the ease of visualization of anatomical structures and the degree of complexity required for successful transfer of learning. Overall, this study presented some conflicting evidence of the favorable outcomes of 3DPMs reported in other similar studies. While effective for anatomy learning as a standalone modality, educators must identify the position 3DPM models hold relative to other modalities in the continuum of undergraduate anatomy education in order to maximize their advantages for students. 相似文献
2.
Claire F. Smith Nicholas Tollemache Derek Covill Malcolm Johnston 《Anatomical sciences education》2018,11(1):44-53
Understanding the three‐dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un‐embalmed donor was scanned through high‐resolution computed tomography. The scan data underwent segmentation and post‐processing and a range of 3D‐printed anatomical models were produced. A four‐stage mixed‐methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post‐test to assess change in learner knowledge following 3D‐printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D‐printed models in small‐group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D‐image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D‐printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D‐printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection‐based teaching. Anat Sci Educ 11: 44–53. © 2017 American Association of Anatomists. 相似文献
3.
Bohong Cai Kanagasuntheram Rajendran Boon Huat Bay Jieying Lee Ching-Chiuan Yen 《Anatomical sciences education》2019,12(6):610-618
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience. 相似文献
4.
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex3D flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm3) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex3D printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi‐layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ 11: 65–72. © 2017 American Association of Anatomists. 相似文献
5.
Derek J. Harmon Barbie A. Klein Cecilia Im Dylan Romero 《Anatomical sciences education》2022,15(3):620-627
Three-dimensional (3D) printing technology has become more affordable, accessible, and relevant in healthcare, however, the knowledge of transforming medical images to physical prints still requires some level of training. Anatomy educators can play a pivotal role in introducing learners to 3D printing due to the spatial context inherent to learning anatomy. To bridge this knowledge gap and decrease the intimidation associated with learning 3D printing technology, an elective was developed through a collaboration between the Department of Anatomy and the Makers Lab at the University of California, San Francisco. A self-directed digital resource was created for the elective to guide learners through the 3D printing workflow, which begins with a patient's computed tomography digital imaging and communication in medicine (DICOM) file to a physical 3D printed model. In addition to practicing the 3D printing workflow during the elective, a series of guest speakers presented on 3D printing applications they utilize in their clinical practice and/or research laboratories. Student evaluations indicated that their intimidation associated with 3D printing decreased, the clinical and research topics were directly applicable to their intended careers, and they enjoyed the autonomy associated with the elective format. The elective and the associated digital resource provided students with the foundational knowledge of 3D printing, including the ability to extract, edit, manipulate, and 3D print from DICOM files, making 3D printing more accessible. The aim of disseminating this work is to help other anatomy educators adopt this curriculum at their institution. 相似文献
6.
Geoffery D. Fernquist;Karen E. Samonds; 《Anatomical sciences education》2024,17(7):1384-1388
Embryology is an essential component to understanding human anatomy. It requires an in-depth understanding of 3D knowledge but is primarily taught with 2-dimensional resources. In particular, the development of the human heart is a complex process and difficult to understand using traditional teaching methods. We present here a series of heart embryology models created to supplement embryology education and aid students in understanding this complex process. Using Polydoh moldable plastic, models representing six different critical steps in heart formation are described, including: the fusing of the heart tubes (days 21–23), beginning of the cardiac loop (early day 23), fully formed cardiac loop (late day 23), four-week heart, formation of the endocardial cushions and septi (late fourth week), and heart with fully formed septi with functioning foramen ovale (sixth week). These models not only improve embryology education but also the understanding of heart pathologies. This method provides an affordable option for embryology education and provides students with learning tools that assist with the comprehension of the development of a complex organ. 相似文献
7.
Sreenivasulu Reddy Mogali Wai Yee Yeong Heang Kuan Joel Tan Gerald Jit Shen Tan Peter H. Abrahams Nabil Zary Naomi Low‐Beer Michael Alan Ferenczi 《Anatomical sciences education》2018,11(1):54-64
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on‐going. We hypothesize that three‐dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi‐colored and multi‐material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ~1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi‐colored, multi‐material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54–64. © 2017 American Association of Anatomists. 相似文献
8.
9.
Understanding orbital anatomy is important for optometry students, but the learning resources available are often fragile, expensive, and accessible only during scheduled classes. Drawing on a constructivist, personalized approach to learning, this study investigated students’ perceptions of an alternative learning resource: a three-dimensional (3D) printed model used in an active learning task. A human skull was three-dimensionally scanned and used to produce a 3D printed model for each student. Students actively participated in model creation by tracing suture lines and coloring individual orbital bones during a practical class, then keeping the model for future study. Students’ perceptions of the 3D orbital model were examined through a questionnaire: the impact the model had on their learning; perceptions of the 3D orbit compared to traditional resources; and utility of having their own personalized model. The 3D orbit was well received by the student cohort. Participants (n = 69) preferred the 3D orbit as a resource for learning orbital bone anatomy compared to traditional learning resources, believing the model helped them to understand and visualize the spatial relationships of the bones, and that it increased their confidence to apply this knowledge. Overall, the participants liked that they co-created the model, could touch and feel it, and that they had access to it whenever they liked. Three-dimensional printing technology has the potential to enable the creation of effective learning resources that are robust, low-cost and readily accessible to students, and should be considered by anyone wishing to incorporate personalized resources to their multimodal teaching repertoire. 相似文献
10.
In mainland China, histology and embryology (HE) are taught in one course as an essential component of medical curricula. The effectiveness of HE courses directly affects the quality of medical students. To determine the present situation and changes in HE teaching in Chinese medical schools, a nationwide survey was conducted among the HE departmental leaders. In total, 66 responses were included in the study, representing prominent Chinese mainland medical schools. The results revealed that most HE teachers have medical educational backgrounds; an increasing number of teaching staff with PhDs have joined the teaching staffs. A range of 71 to 90 HE curriculum contact hours is predominant. The ratio of theory to practice for HE contact hours is 1:1 at half of the surveyed medical schools. The numbers of students in each laboratory are less than 30 and from 31 to 60 at 23 and 36 medical schools, respectively. Virtual microscopy is employed in 40% of the surveyed medical schools. Didactic teaching is the most common strategy, although new teaching approaches are being employed gradually. During the past 20 years, both the total number of HE teachers and the number of HE teachers with medical educational backgrounds have been reduced in at least half of the surveyed schools. A total of 83.33% of the surveyed schools have reduced their HE contact hours. Almost half of the Chinese medical schools remained unchanged in both their ratio of theory to practice and the number of students in each laboratory. The data derived from this study help to understand the development of the HE discipline at Chinese medical schools. 相似文献
11.
Courtney P. Orsbon Rebecca S. Kaiser Callum F. Ross 《Anatomical sciences education》2014,7(4):251-261
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists. 相似文献
12.
Israel Valverde Gorka Gomez Nick Byrne Shafkat Anwar Miguel Angel Silva Cerpa Maria Martin Talavera Kuberan Pushparajah Maria Nieves Velasco Forte 《Anatomical sciences education》2022,15(4):719-730
The utility of three-dimensional (3D) printed models for medical education in complex congenital heart disease (CHD) is sparse and limited. The purpose of this study was to evaluate the utility of 3D printed models for medical education in criss-cross hearts covering a wide range of participants with different levels of knowledge and experience, from medical students, clinical fellows up to senior medical personnel. Study participants were enrolled from four dedicated imaging workshops developed between 2016 and 2019. The study design was a non-randomized cross-over study to evaluate 127 participants' level of understanding of the criss-cross heart anatomy. This was evaluated using the scores obtained following teaching with conventional images (echocardiography and magnetic resonance imaging) versus a 3D printed model learning approach. A significant improvement in anatomical knowledge of criss-cross heart anatomy was observed when comparing conventional imaging test scores to 3D printed model tests [76.9% (61.5%–87.8%) vs. 84.6% (76.9%–96.2%), P < 0.001]. The increase in the questionnaire marks was statistically significant across all academic groups (consultants in pediatric cardiology, fellows in pediatric cardiology, and medical students). Ninety-four percent (120) and 95.2% (121) of the participants agreed or strongly agreed, respectively, that 3D models helped them to better understand the medical images. Participants scored their overall satisfaction with the 3D printed models as 9.1 out of 10 points. In complex CHD such as criss-cross hearts, 3D printed replicas improve the understanding of cardiovascular anatomy. They enhanced the teaching experience especially when approaching medical students. 相似文献
13.
为了应对全球范围内新一轮的科技革命和产业革命,新工科建设成为了工程教育改革的新目标与新要求.在新工科背景下培养起来的学生必须具备牢固的基础知识和过硬的基本技能,适应社会和国家的需求.以3D打印技术教学为主要探究对象,阐述了新工科背景下3D打印技术应用于本科教学实验室建设中的课程体系构建、实验室建设、师资队伍以及人才培养... 相似文献
14.
Sophie E. Fourniquet Kaylin J. Beiter Jason C. Mussell 《Anatomical sciences education》2019,12(4):407-416
Benefits from the use of cadavers in anatomical education are well described. Historically, human embryos and fetal cadavers were used in anatomy education to understand development and congenital malformations. Recently, three-dimensional printed models produced from archival fetal specimens, and online repositories of images from archival collections of embryos and fetuses, have been used as an educational tool in human development courses. Given that the archival specimens were likely obtained prior to the era of informed consent, this raises questions about their appropriate and ethical use. Because some institutions in the United States retain archival collections of embryonic and fetal specimens that were once used as educational tools, their existence and utility require frequent reexamination against contemporary ethical frameworks to guide appropriate use or utilization. Four ethical rationales for uses of these collections are examined, including destruction, indefinite storage, use in research, and use in health professions education. Guidelines for the use of archival collections of human embryos and fetuses are presented. Indefinite storage and use in health professions education are supported, while use in research is also permitted, however, such use is limited and dependent on circumstance and purpose. The development of current digital repositories and three-dimensionally printed models based on archival collections that were collected without informed consent, or those promoting commercial opportunity, are not supported. New embryonic and fetal donations obtained with informed consent should include reference to potential uses with new technology and virtual, genetic, or imaging applications. 相似文献
15.
Paul G. McMenamin Michelle R. Quayle Colin R. McHenry Justin W. Adams 《Anatomical sciences education》2014,7(6):479-486
The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection‐based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin‐containing embalming fluids. This report details how additive manufacturing or three‐dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. Anat Sci Educ 7: 479–486. © 2014 American Association of Anatomists. 相似文献
16.
Ruth Mathew;Niveta Ramakrishnan;Fiona Boland;Teresa Pawlikowska;Jane C. Holland; 《Anatomical sciences education》2024,17(7):1495-1508
In modern medical curricula, embryology is typically taught through lectures, with a few institutions providing tutorials. The use of 3-D videos or animations enables students to study these embryological structures and how they change with time. The aim of this study was to assess the quality of cardiac embryology videos available on YouTube. A systematic literature review regarding the use of YouTube in teaching or learning cardiac embryology identified no papers that examined this specific question, and next, a systematic search of YouTube was performed. A total of 1200 cardiac embryology videos were retrieved using 12 specific search terms, with 370 videos retrieved under two or more search terms and excluded. A further 511 videos were excluded under additional, specific criteria. The remaining 319 videos were evaluated with the YouTube Video Assessment Criteria (UTvAC), with 121 rated as “useful.” Videos on YouTube are uploaded with a wide audience in mind, from children to cardiologists, and content control is imperfect. Multiple videos were identified as duplicates of videos from original channels, typically without attribution. While 49 videos showed operations or human material, none contained an ethical statement regarding consent, and only 10 of these included an age restriction or graphical advisory. While there are useful videos for medical students studying cardiac embryology on YouTube, intuitive search strategies will also identify many with irrelevant content and of variable quality. Digital competence and search strategies are not innate skills, so educators should teach students to assess information so as to avoid overload or “filter failure.” 相似文献
17.
西班牙的医学教育可分成三个不同的阶段,即本科生医学教育、毕业后医学教育和继续医学教育.本文介绍这三个阶段的现状、各阶段的优势和弱点、各阶段面临的挑战,以及如何看待国际社会对改革的支持. 相似文献
18.
David Gareth Jones 《Anatomical sciences education》2019,12(4):435-443
New technological developments have frequently had major consequences for anatomy education, and have raised ethical queries for anatomy educators. The advent of three-dimensional (3D) printing of human material is showing considerable promise as an educational tool that fits alongside cadaveric dissection, plastination, computer simulation, and anatomical models and images. At first glance its ethical implications appear minimal, and yet the more extensive ethical implications around clinical bioprinting suggest that a cautious approach to 3D printing in the dissecting room is in order. Following an overview of early groundbreaking studies into 3D printing of prosections, organs, and archived fetal material, it has become clear that their origin, using donated bodies or 3D files available on the Internet, has ethical overtones. The dynamic presented by digital technology raises questions about the nature of the consent provided by the body donor, reasons for 3D printing, the extent to which it will be commercialized, and its comparative advantages over other available teaching resources. In exploring questions like these, the place of 3D printing within a hierarchical sequence of value is outlined. Discussion centers on the significance of local usage of prints, the challenges created by regarding 3D prints as disposable property, the importance of retaining the human side to anatomy, and the unacceptability of obtaining 3D-printed material from unclaimed bodies. It is concluded that the scientific tenor of 3D processes represents a move away from the human person, so that efforts are required to prevent them accentuating depersonalization and commodification. 相似文献
19.
按照国际标准对波黑的5所医学院进行了内部评估和外部评估,参与者包括医学院管理人员、教师、学生以及外部评估专家.评估内容包括10个项目:学校宗旨和目标、课程、管理、教师、学生、设施和技术、经费情况、国际关系、内部质量保证和发展规划.结果表明,内部评估中有的学校高估了自己的总体表现,有的学校明显高估或低估自己在某些项目上的表现.评估工作表明,即使在复杂和不利的条件下,对医学教育进行建设性的、有组织的评估也是可能的. 相似文献