首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
与自然数n有关的不等式的证明通常采用数学归纳法。这里我们给出可与数学归纳法相媲美的新方法——自然数函数单调性法。定理若n、n_0∈N,且n>n_0,f(n)是自然数n的单调递增(或单调递减)函数且f(n_0)≥m(或≤M),则f(n)≥m(或≤M)。由函数的单调性知上面的定理是显然的,下面举例说明它的应用。例1 求证:当n是不小于3的整数时,有n~(n+1)>(n+1)~n。证明设f(n)=((n+1)~n)/(n~(n+1)),  相似文献   

2.
不等式的证明历来是各级数学竞赛中的热点与难点。在本文中,对不等式的性质及一些重要不等式应用不再加以探讨,而着力于从近几年的竞赛题中归纳出一些证明不等式的技巧,供读者参考。一、利用递推如果在不等式的证明中,遇到了证明f(n)相似文献   

3.
不等式的证明方法有比较法、分析法、综合法、归纳法等等,但对于一类不等式,有时不如利用函数性质及图象来证明更显得直观形象。我们知道,若在含有字母的式子中,如若认定某一字母为自变量,而另一些字母看成是一定范围内的常数,那么不等式便成了以选定为自变量的那个字母的一元一次或一元高次不等式,进而可以以此字母为变量构成函数。因此,我们可利用函数的性质来证明某些不等式。 (一) 利用函数的单调性证明不等式大家知道,若函数y=f(x)定义在x∈[m,n]上(m0;同样,如若y=f(x)在x∈[m,n]上是单调递减函数,又f(n)≥0,那么y=f(x)在x∈(m,n)上恒有f(x)>0。根据此性质可证明如下的一些问题。  相似文献   

4.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

5.
一、利用基本不等式或不等式的性质放缩例1 若g(x)=f(x) 1,f(x)=log2~(1/2)(x 1),m、n、t>0且n2=mt,求证:g(m) g(t)≥2g(n).  相似文献   

6.
不等式的证明是中学数学习题的一大类型,我们知道,与自然数n有关的不等式的证明,其常规解题思路是利用数学归纳法,笔者试图通过下述定理来证明一些与自然数n有关的不等式的问题. 定理若f(n)与g(n)都是自然数集上的函数,则不等式f(n)>g(n)对一切自然数n≥a成立的充分条件是:  相似文献   

7.
我们熟知某些初等函数的凹凸情况,对较复杂的初等函数的凹凸判断可由微分学知:若f(x)在(a,b)上有二阶导数,且f″(x)>0(<0),则f(x)在(a,b)上是凹(凸)函数,对凹(凸)函数有如下性质。(证略) 如果f(x)是(a,b)上的凹(凸)函数,n是自然数,则对x_i∈(a,b)(i=1,2,…,n)有不等式(f(x_1) f(x_2) … f(x_n))/n≥(≤)f((x_1 x_2 … x_n)/n) 当n>1时,上式等号成立的充要条件是x_1=x_2=…=x_n。灵活巧妙地运用上述性质,对证明某些不等式非常有效,常可使竞赛题迎刃而解。例1 设n为自然数,a、b为正实数,  相似文献   

8.
形如f(x) g(x)的无理不等式 ,是高考中常出现的一类不等式题型 .这类不等式的常规解法是利用不等式的性质 ,设法转化为 1个或 2个有理不等式来求解 ,这种方法常称为公式法 :(1 )f(x) 0 ,f(x) <[g(x) ]2 .(2 )f(x) >g(x) g(x)≥ 0 ,f(x)  相似文献   

9.
我们知道,不等式的证明方法繁多,各种方法各显其能,一般来说可分为两大类:一类是初等方法,另一类是高等方法。下面浅谈数学分析中所诱导出关于不等式的若干证法。一、单调性:定理:区间I上的可导函数f(x),如果在I内部的x恒有f′(x)>O)(n时(m,n均为自然数)(1+n)m>(1+m)~n  相似文献   

10.
本刊90年第6期上,王德刚老师给出了证明一些与自然数n有关的不等式的一种较为实用的方法,该法是通过f(a)>g(a),f(n)-g(n)>f(n-1)-g(n-1),证得f(n)>g(n)(n≥a)。受此启示,横向类比,笔者再给出证明形如f(n)>g(n)的一个也很实用的方法。定理  相似文献   

11.
本文讨论自然数集上若干初等函数方程的求解问题。由于函数的自变量限取自然数,实数集上的初等函数方程的求解方法就未必都能套用。有些方程在自然数集的求解比在实数集上要简单。事实上,有些仅用递推关系推出所求方程的解的解析表达式,再用数学归纳法证之即可,有些只须通过适当的转化就可获得解答。但也有方程通过转化手段则行不通。下面我们就对几个具体的方程进行论述。方程之一:(线性函数方程)f在自然数集上定义,对于任何自然数m,n都有f(m+n)=f(m)+f(n)。当且仅当对于任何自然数  相似文献   

12.
现行高中代数教材中,一些与自然数有关的等式或不等式的证明,常采用用数学归纳法。本文介绍“逐项比较法”来证,思路清晰,通俗易懂且富有新意。其理论依据是: 命题1 若sum from k=1 to n a_k=f(n),sum from k=1 to n b_k=g(n)且  相似文献   

13.
文1介绍了通过构造函数曲线的切线来解决:在满足x_i=s(s为常数)的条件下,证明形如f(x_i)≥M(或≤M)的一类对称不等式.思路是:构造在x_i的均值x=s/n点的切线g(x),然后证明f(x)≥g(x)(或f(x)≤g(x)),再累加获得不等式的证明.作为反思性解题学习,笔者发现构造切线法在解决以上一类问题的确行之有效,但在运用时有不同的思维层  相似文献   

14.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

15.
<正>构造法是一种数学能力,每年的考题中都能找出许多通过构造函数、构造不等式,以及构造新的方程来解答问题的试题。一、构造一次函数证明不等式例1设a,b,c∈R,且它们的绝对值都不大于1,求证:ab+bc+ca+1≥0。分析:构造函数f(a)=ab+bc+ca+1,f(a)是关于a的一次函数,由于a∈[-1,1],因此,只要证明f(-1)≥0且f(1)≥0,就能证明f(a)≥0。  相似文献   

16.
一、证明等式【例1】求证:C1n 2C2n 3C3n … nCnn=n·2n-1.证明:由题构造二项式(1 x)n=C0n C1nx C2nx2 … Cnnxn.两端对x求导数得[(1 x)n]=[C0n C1nx C2nx2 … Cnnxn]即n(1 x)n-1=C1n 2C2nx … (n-1)Cn-1nxn-2 nCnnxn-1令x=1得n·2n-1=C1n 2C2n 3C3n … nCnn∴C1n 2C2n 3C3n … nCnn=n·2n-1.二、证明不等式【例2】已知m,n是正整数,且2≤m(1 n)m.证明:原不等式等价于不等式nln(1 m)>mln(1 n)即ln(1 n)n1,…  相似文献   

17.
美国普特南数学竞赛(1963年)中有这样一道题:设f(x)是定义在自然数集上且取自然数的严格递增函数,如果f(2)=2,且当m,n互素时,有f(mn)=f(m)f(n).(1)证明对一切正整数x,有  相似文献   

18.
不等式的证明是数学分析中经常遇到而且比较困难的问题,本文将对数学分析中不等式证明的常用方法作简单的归纳与总结。一、利用函数单调性证明不等式这是最常用最基本的方法。由文[1]定理7.1,若函数.f在(a,b)可导,则.f在(a,b)内递增(递减)的充要条件是f'(x)≥0(f'(x)≤0),x∈(a,b)。特别地,设函数f在(a,b)内可异,若f'(x)>0(f'(x)相似文献   

19.
给出了求关于自然数k的m次多项式数列f(k)=α0k^m α1k^m-1 … αm-1k αm=∑i=0^m αik^m-i的前n项和∑k=1 m f(k)的简单递推公式,而无需应用Bernoulli数,推广了文[1]、[2]、[3]的结论。  相似文献   

20.
一、证明不等式例1已知n为大于1的自然数,求证:(1+13)(1+15)…(1+12n-1)>2n+1√2.证明因为欲证的不等式的左边和右边都为正,故可构造数列狖an狚,并令an=(1+13)(1+15)…(1+12n-1)2n+1√2.显然,an>0,a2=835√>1.若对任意n≥2,nN,都有an>1,则原不等式得证.∵an+1an=(1+13)(1+15)…(1+12n+1)·2n+1√2n+3√·(1+13)(1+15)…(1+12n-1)=2n+2(2n+1)(2n+3)√>2n+2(2n+1)+(2n+3)2=1(n≥2),∴an+1>an>an-1>…>a2>1,故原不等式成立.二、解不等式例2解不等式4x+log3x+x2>5.解设f(x)=4x+log3x+x2,则其定义域为(0,+∞),且在定义域内是增函数.又∵f(1)=5…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号