首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items. When tests are equated across forms, researchers check for the stability of common items before including them in equating procedures. Stability is usually examined in relation to polytomous items' central “location” on the scale without taking into account the stability of the different item scores (step difficulties). We examined the stability of score scales over a 3–5-year period, considering both stability of location values and stability of step difficulties for common item equating. We also investigated possible changes in the scale measured by the tests and systematic scale drift that might not be evident in year-to-year equating. Results across grades and content areas suggest that equating results are comparable whether or not the stability of step difficulties is taken into account. Results also suggest that there may be systematic scale drift that is not visible using year-to-year common item equating.  相似文献   

2.
In observed‐score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response theory (IRT) model. The parameters from such a model can be utilized to derive the score probabilities for the tests and these score probabilities may then be used in observed‐score equating. In this study, the asymptotic standard errors of observed‐score equating using score probability vectors from polytomous IRT models are derived using the delta method. The results are applied to the equivalent groups design and the nonequivalent groups design with either chain equating or poststratification equating within the framework of kernel equating. The derivations are presented in a general form and specific formulas for the graded response model and the generalized partial credit model are provided. The asymptotic standard errors are accurate under several simulation conditions relating to sample size, distributional misspecification and, for the nonequivalent groups design, anchor test length.  相似文献   

3.
Wei Tao  Yi Cao 《教育实用测度》2013,26(2):108-121
ABSTRACT

Current procedures for equating number-correct scores using traditional item response theory (IRT) methods assume local independence. However, when tests are constructed using testlets, one concern is the violation of the local item independence assumption. The testlet response theory (TRT) model is one way to accommodate local item dependence. This study proposes methods to extend IRT true score and observed score equating methods to the dichotomous TRT model. We also examine the impact of local item dependence on equating number-correct scores when a traditional IRT model is applied. Results of the study indicate that when local item dependence is at a low level, using the three-parameter logistic model does not substantially affect number-correct equating. However, when local item dependence is at a moderate or high level, using the three-parameter logistic model generates larger equating bias and standard errors of equating compared to the TRT model. However, observed score equating is more robust to the violation of the local item independence assumption than is true score equating.  相似文献   

4.
ABSTRACT

The main purposes of this study were to develop bi-factor multidimensional item response theory (BF-MIRT) observed-score equating procedures for mixed-format tests and to investigate relative appropriateness of the proposed procedures. Using data from a large-scale testing program, three types of pseudo data sets were formulated: matched samples, pseudo forms, and simulated data sets. Very minor within-format residual dependence in mixed-format tests was found after controlling for the influence of the primary general factor. The unidimensional IRT and BF-MIRT equating methods produced similar equating results for the data used in this study. When a BF-MIRT model is implemented, we recommend the use of observed-score equating instead of true-score equating because the latter requires an arbitrary approximation or reduction process to relate true scores on test forms.  相似文献   

5.
An item-preequating design and a random groups design were used to equate forms of the American College Testing (ACT) Assessment Mathematics Test. Equipercentile and 3-parameter logistic model item-response theory (IRT) procedures were used for both designs. Both pretest methods produced inadequate equating results, and the IRT item preequating method resulted in more equating error than had no equating been conducted. Although neither of the item preequating methods performed well, the results from the equipercentile preequating method were more consistent with those from the random groups method than were the results from the IRT item pretest method. Item context and position effects were likely responsible, at least in part, for the inadequate results for item preequating. Such effects need to be either controlled or modeled, and the design further researched before the item preequating design can be recommended for operational use.  相似文献   

6.
IRT Equating Methods   总被引:1,自引:0,他引:1  
The purpose of this instructional module is to provide the basis for understanding the process of score equating through the use of item response theory (IRT). A context is provided for addressing the merits of IRT equating methods. The mechanics of IRT equating and the need to place parameter estimates from separate calibration runs on the same scale are discussed. Some procedures for placing parameter estimates on a common scale are presented. In addition, IRT true-score equating is discussed in some detail. A discussion of the practical advantages derived from IRT equating is offered at the end of the module.  相似文献   

7.
In operational testing programs using item response theory (IRT), item parameter invariance is threatened when an item appears in a different location on the live test than it did when it was field tested. This study utilizes data from a large state's assessments to model change in Rasch item difficulty (RID) as a function of item position change, test level, test content, and item format. As a follow-up to the real data analysis, a simulation study was performed to assess the effect of item position change on equating. Results from this study indicate that item position change significantly affects change in RID. In addition, although the test construction procedures used in the investigated state seem to somewhat mitigate the impact of item position change, equating results might be impacted in testing programs where other test construction practices or equating methods are utilized.  相似文献   

8.
Accurate equating results are essential when comparing examinee scores across exam forms. Previous research indicates that equating results may not be accurate when group differences are large. This study compared the equating results of frequency estimation, chained equipercentile, item response theory (IRT) true‐score, and IRT observed‐score equating methods. Using mixed‐format test data, equating results were evaluated for group differences ranging from 0 to .75 standard deviations. As group differences increased, equating results became increasingly biased and dissimilar across equating methods. Results suggest that the size of group differences, the likelihood that equating assumptions are violated, and the equating error associated with an equating method should be taken into consideration when choosing an equating method.  相似文献   

9.
《教育实用测度》2013,26(4):383-407
The performance of the item response theory (IRT) true-score equating method is examined under conditions of test multidimensionality. It is argued that a primary concern in applying unidimensional equating methods when multidimensionality is present is the potential decrease in equity (Lord, 1980) attributable to the fact that examinees of different ability are expected to obtain the same test scores. In contrast to equating studies based on real test data, the use of simulation in equating research not only permits assessment of these effects but also enables investigation of hypothetical equating conditions in which multidimensionality can be suspected to be especially problematic for test equating. In this article, I investigate whether the IRT true-score equating method, which explicitly assumes the item response matrix is unidimensional, is more adversely affected by the presence of multidimensionality than 2 conventional equating methods-linear and equipercentile equating-using several recently proposed equity-based criteria (Thomasson, 1993). Results from 2 simulation studies suggest that the IRT method performs at least as well as the conventional methods when the correlation between dimensions is high (³ 0.7) and may be only slightly inferior to the equipercentile method when the correlation is moderate to low (£ 0.5).  相似文献   

10.
In this article, linear item response theory (IRT) observed‐score equating is compared under a generalized kernel equating framework with Levine observed‐score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when using data from IRT models, linear IRT observed‐score equating is virtually identical to Levine observed‐score equating. This leads to the conclusion that poststratification equating based on true anchor scores can be viewed as the curvilinear Levine observed‐score equating.  相似文献   

11.
The 1986 scores from Florida's Statewide Student Assessment Test, Part II (SSAT-II), a minimum-competency test required for high school graduation in Florida, were placed on the scale of the 1984 scores from that test using five different equating procedures. For the highest scoring 84 % of the students, four of the five methods yielded results within 1.5 raw-score points of each other. They would be essentially equally satisfactory in this situation, in which the tests were made parallel item by item in difficulty and content and the groups of examinees were population cohorts separated by only 2 years. Also, the results from six different lengths of anchor items were compared. Anchors of 25, 20, 15, or 10 randomly selected items provided equatings as effective as 30 items using the concurrent IRT equating method, but an anchor of 5 randomly selected items did not  相似文献   

12.
The equating performance of two internal anchor test structures—miditests and minitests—is studied for four IRT equating methods using simulated data. Originally proposed by Sinharay and Holland, miditests are anchors that have the same mean difficulty as the overall test but less variance in item difficulties. Four popular IRT equating methods were tested, and both the means and SDs of the true ability of the group to be equated were varied. We evaluate equating accuracy marginally and conditional on true ability. Our results suggest miditests perform about as well as traditional minitests for most conditions. Findings are discussed in terms of comparability to the typical minitest design and the trade‐off between accuracy and flexibility in test construction.  相似文献   

13.
In order to equate tests under Item Response Theory (IRT), one must obtain the slope and intercept coefficients of the appropriate linear transformation. This article compares two methods for computing such equating coefficients–Loyd and Hoover (1980) and Stocking and Lord (1983). The former is based upon summary statistics of the test calibrations; the latter is based upon matching test characteristic curves by minimizing a quadratic loss function. Three types of equating situations: horizontal, vertical, and that inherent in IRT parameter recovery studies–were investigated. The results showed that the two computing procedures generally yielded similar equating coefficients in all three situations. In addition, two sets of SAT data were equated via the two procedures, and little difference in the obtained results was observed. Overall, the results suggest that the Loyd and Hoover procedure usually yields acceptable equating coefficients. The Stocking and Lord procedure improves upon the Loyd and Hoover values and appears to be less sensitive to atypical test characteristics. When the user has reason to suspect that the test calibrations may be associated with data sets that are typically troublesome to calibrate, the Stocking and Lord procedure is to be preferred.  相似文献   

14.
The analytically derived asymptotic standard errors (SEs) of maximum likelihood (ML) item estimates can be approximated by a mathematical function without examinees' responses to test items, and the empirically determined SEs of marginal maximum likelihood estimation (MMLE)/Bayesian item estimates can be obtained when the same set of items is repeatedly estimated from the simulation (or resampling) test data. The latter method will result in rather stable and accurate SE estimates as the number of replications increases, but requires cumbersome and time-consuming calculations. Instead of using the empirically determined method, the adequacy of using the analytical-based method in predicting the SEs for item parameter estimates was examined by comparing results produced from both approaches. The results indicated that the SEs yielded from both approaches were, in most cases, very similar, especially when they were applied to a generalized partial credit model. This finding encourages test practitioners and researchers to apply the analytically asymptotic SEs of item estimates to the context of item-linking studies, as well as to the method of quantifying the SEs of equating scores for the item response theory (IRT) true-score method. Three-dimensional graphical presentation for the analytical SEs of item estimates as the bivariate function of item difficulty together with item discrimination was also provided for a better understanding of several frequently used IRT models.  相似文献   

15.
One of the major assumptions of item response theory (IRT)models is that performance on a set of items is unidimensional, that is, the probability of successful performance by examinees on a set of items can be modeled by a mathematical model that has only one ability parameter. In practice, this strong assumption is likely to be violated. An important pragmatic question to consider is: What are the consequences of these violations? In this research, evidence is provided of violations of unidimensionality on the verbal scale of the GRE Aptitude Test, and the impact of these violations on IRT equating is examined. Previous factor analytic research on the GRE Aptitude Test suggested that two verbal dimensions, discrete verbal (analogies, antonyms, and sentence completions)and reading comprehension, existed. Consequently, the present research involved two separate calibrations (homogeneous) of discrete verbal items and reading comprehension items as well as a single calibration (heterogeneous) of all verbal item types. Thus, each verbal item was calibrated twice and each examinee obtained three ability estimates: reading comprehension, discrete verbal, and all verbal. The comparability of ability estimates based on homogeneous calibrations (reading comprehension or discrete verbal) to each other and to the all-verbal ability estimates was examined. The effects of homogeneity of item calibration pool on estimates of item discrimination were also examined. Then the comparability of IRT equatings based on homogeneous and heterogeneous calibrations was assessed. The effects of calibration homogeneity on ability parameter estimates and discrimination parameter estimates are consistent with the existence of two highly correlated verbal dimensions. IRT equating results indicate that although violations of unidimensionality may have an impact on equating, the effect may not be substantial.  相似文献   

16.
This study investigates a sequence of item response theory (IRT) true score equatings based on various scale transformation approaches and evaluates equating accuracy and consistency over time. The results show that the biases and sample variances for the IRT true score equating (both direct and indirect) are quite small (except for the mean/sigma method). The biases and sample variances for the equating functions based on the characteristic curve methods and concurrent calibrations for adjacent forms are smaller than the biases and variances for the equating functions based on the moment methods. In addition, the IRT true score equating is also compared to the chained equipercentile equating, and we observe that the sample variances for the chained equipercentile equating are much smaller than the variances for the IRT true score equating with an exception at the low scores.  相似文献   

17.
Combinations of five methods of equating test forms and two methods of selecting samples of students for equating were compared for accuracy. The two sampling methods were representative sampling from the population and matching samples on the anchor test score. The equating methods were the Tucker, Levine equally reliable, chained equipercentile, frequency estimation, and item response theory (IRT) 3PL methods. The tests were the Verbal and Mathematical sections of the Scholastic Aptitude Test. The criteria for accuracy were measures of agreement with an equivalent-groups equating based on more than 115,000 students taking each form. Much of the inaccuracy in the equatings could be attributed to overall bias. The results for all equating methods in the matched samples were similar to those for the Tucker and frequency estimation methods in the representative samples; these equatings made too small an adjustment for the difference in the difficulty of the test forms. In the representative samples, the chained equipercentile method showed a much smaller bias. The IRT (3PL) and Levine methods tended to agree with each other and were inconsistent in the direction of their bias.  相似文献   

18.
Preequating is in demand because it reduces score reporting time. In this article, we evaluated an observed‐score preequating method: the empirical item characteristic curve (EICC) method, which makes preequating without item response theory (IRT) possible. EICC preequating results were compared with a criterion equating and with IRT true‐score preequating conversions. Results suggested that the EICC preequating method worked well under the conditions considered in this study. The difference between the EICC preequating conversion and the criterion equating was smaller than .5 raw‐score points (a practical criterion often used to evaluate equating quality) between the 5th and 95th percentiles of the new form total score distribution. EICC preequating also performed similarly or slightly better than IRT true‐score preequating.  相似文献   

19.
Various applications of item response theory often require linking to achieve a common scale for item parameter estimates obtained from different groups. This article used a simulation to examine the relative performance of four different item response theory (IRT) linking procedures in a random groups equating design: concurrent calibration with multiple groups, separate calibration with the Stocking-Lord method, separate calibration with the Haebara method, and proficiency transformation. The simulation conditions used in this article included three sampling designs, two levels of sample size, and two levels of the number of items. In general, the separate calibration procedures performed better than the concurrent calibration and proficiency transformation procedures, even though some inconsistent results were observed across different simulation conditions. Some advantages and disadvantages of the linking procedures are discussed.  相似文献   

20.
测验等值设计新探讨:ETP设计   总被引:1,自引:1,他引:0  
项目反应理论框架下新的基于题库的大型测验的等值设计:等值到题库设计(ETP设计),与其他传统等值设计相比,可以避免传统共同组设计和共同题设计的一些缺点,并能够在保证等值精度的情况下对测验进行等值。在目前许多大型考试已有题库的情况下,ETP设计具有较大的发展空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号