首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有一道1994年印度数学奥林匹克试题是这样的:假如 P 是△ABC 内一点,AP、BP、CP分别交对边于 D、E、F.求证:AP/PD=AF/FB AE/EC.证明:因为 AF/FB=S_(△ACP)/S_(△BCP),AE/EC=S_(△ABP)/S_(△CBP)·所以 AF/FB AE/EC=  相似文献   

2.
在国内外的一些数学竞赛试题中,经常可发现涉及三角形内点的几何问题,若引进一个简单的定理,则可得解决此类问题的一种十分有效的方法——面积法。定理 P为△ABC内任一点,连结AP、BP、CP并延长,分别交三边于D、E、F。若AE:EC=p:r,AF:FB=q:r。则 S_(△APB):S_(△APC):S_(△BPC)=p:q:r。证明:作AG⊥BE于G,CM⊥BE的延长线于M(如图1),则△AGE∽△CME,故AG/CM=AE/EC=p/r,  相似文献   

3.
题目如图1,过△ABC的顶点C作一条直线,与边AB及中线AD分别交于点F和点E,求证:(AE)/(ED)= (2AF)/(FB).这是一道好题.通过结论的灵活转换,可以获得该题的多种证法.下面介绍有关的思路.思路1.由(AE)/(ED)=(2AF)/(FB),得(AE)/(ED)=(AF)(1/2FB),所以关  相似文献   

4.
题目在Rt△ABC中,∠ACB=90°,△ABC的内切圆⊙O分别与边BC、CA、AB相切于点D、E、F,联结AD,与内切圆⊙O相交于点P,联结BP、CP.若∠BPC=90°,求证:AE+AP=PD.(2006,中国数学奥林匹克)本文指出,对任意三角形,类似的结论都成立.命题在△ABC中,设内切圆⊙O分别与边BC、CA、AB相切于点D、E、F,联结AD,与内切圆⊙O相交于点P,联结BP、CP.则∠BPC=90°的充要条件是AE+AP=PD.引理1自⊙O外一点A作⊙O的切线AE及割线APD(AP相似文献   

5.
定理 P是△ABC形内任一点,AP、BP、CP的延长线分别与其对边交于D、E、F,则PD/AD PE/BE PF/CF=1 证 如图1,设△PAB、△PBC、△PAC和△ABC的面积依次为S_1、S_2、S_3和S,则,S_1 S_2 BS_3=S,又PD/AD=  相似文献   

6.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

7.
贵刊1987年第二期刊《有关三角形面积的一个不等式》,读后深受启发,但感到文中对定理——若P为△ABC内的一个任意点,分别连结AP、BP、CP并延长交对边BC、CA、AB于D、E、F,则S_△DEF≤1/4S_△ABC——的证明过于繁复。这里提供一个简单的证法。证明如图设BD:DC=;λ_1,CE:EA=λ_2AF:FB=λ_3,则  相似文献   

8.
众所周知,若P为△ABC的重心,连结AP、BP、CP并延长分别交对边BC、CA、AB于D、E、F,则 S_(△DEF)=1/4S_(△ABC)。如果P为△ABC内的任意一点,那么S_(△DEF)和1/4S(△ABC)又有何大小关系呢?本文将回答这一问题。定理:若P为△ABC内的任意一点,分别连结AP、BP、CP并延长交对边BC、CA、AB于D、E、F,则  相似文献   

9.
初中几何课本第二册第66页题9是:过△ABC的顶点C任作一直线与边AB及中线AD分别交于点F及E,求证:AE:ED=2AF∶FB。不难将此题简单地引伸为:过△ABC的顶点C任作一直线与边AB及中线AD所在直线分别交于点F及E,则AE∶ED=2AF∶FB,如图。  相似文献   

10.
定理 在△ABC的边BC的延长线上及CA,AB上取点D,E,F,如AF/(FB)=λ_1,BD/(DC)=λ_2,CE/(EA)=λ_3,则 S_(△DEF)=|(λ_1λ_2λ_3-1)/((λ_1 1)(λ_2-1)(λ_3 1))|S_(△ABC)。 证明 ∵CD/(BC)  相似文献   

11.
问题3·10     
如图1,在 Rt△ABC 中,∠B=90°,AB=1,BC=3~(1/2).(1)在△ABC 内找一点 P,使∠APC=∠APB=∠BPC=120°.(通过作图找出点 P,写出作图的主要步骤,不需证明.)(2)在(1)的作图中,若设 AP=x,BP=y,CP=z,求 x+y+z 的值.  相似文献   

12.
定理若四边形一条对角线平行另一条对角线,则此对角线必平分该四边形的面积,其逆命题亦成立。如图1,(1)若AE=EC,则S_(△ABD)=S_(△BCD);(2)若S_(△ABD)=S_(△BCD),则AE=EC。这两个命题是显然成立的,读者可根据图1自己证明。下面举例说明它的应用。例1 如图2,在(?)ABCD中,E是对角  相似文献   

13.
定理1 △ABC中,AD是中线,F为AD上任一点、BF交AC于E,若AE(?)EC=m,则AF:FD=2m.证 过D作DG∥BE交AC于G(如图),则AF:FD=AE:EG.∵ D为BC中点,∴AF/FD=AE/((1/2)EC),即AF:FD=2m.定理2 △ABC中,D为BC上一点,E为AC上的一点,AD、BE交于点F,若AE:EC=m,CD:DB=n,则AF:FD=m(1 n).证明 过D作DG∥BE交AC于G(如图),则  相似文献   

14.
原题:已知锐角△ABC内接于圆O,如图1,设AB>AC,点E在边BC上,连结AE并延长交劣弧(?)于点F,过E分别作边AB、AC的垂线,垂足分别是点G、H.连结FG、FH.求证:当AF经过圆心O时,S_(四边形AGFH)= S_(△ABC).  相似文献   

15.
定理如图,P是△ABC内任意一点,AP、BP、CP的延长线分别交对边于D、E、F,则(1)AP/PD+BP/PE+CP/PF≥6;  相似文献   

16.
三角形内(外)角平分线定理三角形的内(或外)角平分线分对边所得两条线段和这个角的两边对应成比例。证明:这里采取利用三角形面积的证法。如图1,AD(AE)是△ABC的内角∠CAB(外角∠CAF)的平分线,作DG⊥AB,自D作AC的垂线交延长线于H,则DG=DH。于是 S_(ΔABD):S_(ΔACD)=(1/2AB×DG):(1/2AC×DH)=AB:AC又设BC与AD的夹角为α(锐角),则当以AD为底时△ADB与△ADC的高BM、CN分别为BDsinα,DCsinα。这样,S_(ΔADB):S_(ΔADC)=(1/2AD×BDsinα)  相似文献   

17.
本文介绍三角形分角线长的一个公式,并举例说明它在数学竞赛解题中的广泛应用。目的在于启发学生的解题思路,培养其创造性思维能力。定理△ABC的顶点A、B、C所对的边分别为a、b、c,D是边C上任一点,CD分∠C为α、β,则 CD=absin(α β)/asinα bsinβ证明;如图, ∵ S_(△BCD) S_(△ACD)=S_(△ABC), ∴ 1/2a·CDsinα 1/2b·CDsinβ =1/2absin(α β),  相似文献   

18.
公式1 △ABC中,∠C=90°,BC=a,AC=b,AB=c,内切圆半径为r,则r=1/2(a b-c). 证明:如图1,⊙o内切于△ABC,D、F、E为切点.由切线长定理知:AF=AE.CE=CD,BF=BD. ∴a b-c=(BD DC) (AE EC) -(AF BF) =2CE=2r.  相似文献   

19.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

20.
一道CMO试题的纯代数证法   总被引:1,自引:0,他引:1  
徐丹 《中等数学》2007,(3):21-22
题目 在Rt △ABC中,∠ACB=90°,△ABC的内切圆⊙0分别与BC、CA、AB相切于点D、E、F,联结AD,与内切圆⊙0相交于点P,联结即、CP.若∠BPC=90°,求证: AE+AP=PD.[第一段]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号