首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如果我们能够从约束方程或约束方程组中把其中一些未知数解出,那么将其代入函数式后,所求的条件极值便转化为另一变数较少的函数的普通极值了。定理 4.如果一元函数 z=f(x,φ(x))在 x=x_0处取得最大(小)值,那么二元函数z=f(x,y)在条件 y=φ(x)下在点(x_0 φ(x_0))处也取得最大(小)值。定理 4 可以推广到多元函数的情形。例7.若三个非负变数 x,y,z 满足条件3y 2z=3-x 和3y z=4-3x,求线性函数w=3x-2y 4z 的最大值与最小值。  相似文献   

2.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

3.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

4.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

5.
我们知道,如果函数 f(x)、g(x)在点 x_0连续,则函数 max(f(x),g(x))在点 x_0亦连续。现在要问:如果函数 f(x)、g(x)在 x_0点可导,函数 max(f(x),g(x))是否在点 x_0亦可导呢?下面的定理1和定理2给出了判别函数 max(f(x),g(x))可导的充分条件。定理1 如果函数 f(x)、g(x)在 x_0点可导,且f(x_0)  相似文献   

6.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

7.
本文讨论了Hammerstein型积分方程φ(x)=(integralfromn=G)K(x,y)f(y,φ(y))dy=Aφ(x),在条件f(x,u)=(sumfromi=1ton)α_i(x)u~(β_i)下的正解,所得到的结果是文[1]中有关结论的推广。  相似文献   

8.
零点分段法是以函数的零点为分点将其定义域分成若干个使其定号的集合的方法。它在处理某些有关绝对值的问题、解某些不等式、研究某些函数的单调性等问题时是一个有效的工具。本文谈谈这个方法及其依据,并举例说明它的一些应用。 定理:如果f(x)是区间Ⅰ上的连续函数(区间Ⅰ可以是开的、闭的或半开的),且它只有n个零点x_1相似文献   

9.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

10.
一、问题的提出与探究已知函数f(x)=(-3x 7)~(1/2)(0≤x≤7/3), 求y=f(x)与它的反函数y=f-1(x)的交点.一般常有这样的思路: 解:y=f(x)与y=f-1(x)相交于y=x上, 所以建立方程 x=(-3x 7)~(1/2)(0≤x≤7/3), (舍去),  相似文献   

11.
复合二次函数y=aφ~2(x) bφ(x) c(a≠0)的极值问题,在初等数学中占有非常重要的地位。先看一个例子: 已知x_1,x_2是方程x~2-(k-2)x (k~2 3k 5)=0(k是实数)的两个实根,x_1~2 x_2~2的最大值是(A)19,(B)18,(C)5 5/9(D)不存在。有人这样解:据韦达定理x_1 x_2=k-2,x_1x_2=k~2 3k 5,因此有 f(k)=x_1x~2 x_2~2=(x_1 x_2)~2-2x_1x_2=-(k-2)~2-2(k~2 3k 5)即 f(k)=-k~2-10k-6它二次项系数为负,因此有最大值 4ac-b~2/4a=4(-1)(-6)-(-10)~2/4(-1)=19  相似文献   

12.
中师部编教材《代数与初等函数》第二册第八章第三节中的定理3是这样叙述的:“设不定方程αx by=c(α>0,b>0)有一个整数解x_0,y_0,则它的全部整数解可以表示成 x=x_0 bt y=y_0-αt其中t为任何整数。”我认为这一定理中关于解的一般形式值得商榷,按定理给出的解的一般形式,对有些不定方程漏掉了许多解。如:解不定方程4x 6y=10,因为x=1,y=1是这个方程的一个整数解,直接应用定理,得它的全部整数解集为A={(x,y):x=1 6t,y=1-4t,t∈z}。另一方面方程4x 6y=10又等价于2x 3y=5,这样,  相似文献   

13.
(φ_1(x,y)∨0 本文讨论的是在约束条件中的某一个)下,求目标函数μ=f(x,y)的极值(最大值或最小值)问题。用几何语言来说,就是在平面区域达到极值的点(x_0,y_0)来。可以证明,当φ(x,y)为不高于二次的多项式,f(x,y)是相当广泛的一类初等函数(不必限定它一定是不高于二次的多项式)时μ=f(x,y)在M的边界上达到极值。这类条件极值问题,借助于图象,一般能用下面的几种初等解法:  相似文献   

14.
韦达定理是代数中的一个重要定理,它在解析几何中也有广泛的应用。在解某些解析几何题时,如果注意运用韦达定理,有时能使运算简便。如以下几例。 一、利用x_1 x_2=-b/a 例1.点P(2,2)是椭圆x~2 8y~2 4x-24y 6=0的一条弦的中点,求这条弦所在的直线方程。 解:设所求的直线方程为y-2=k(x-2),它与椭圆的方程x~2 8y~2 4x-24y 6=0组成方程组,消去y得:(1 8k~2)x~2-(32k~2-8k-4)x 32k~2-16k-10=0,设它的两个根是x_1和x_2,则有x_1 x_2=4,根据韦达定理有  相似文献   

15.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

16.
阿基米德创造的用来逼近π的方法(译者注:即刘徽的“割圆术”),是数值分析的基本概念之一——迭代数列的一个简单有趣的先例。由函数f按下式生成的数列{x_n}: x_1=f(x_0),x_2=f(x_1),……,x_n=f(x_(n-1)),……,n=1,2,3,……叫做一个迭代数列(或递推数列),x_0叫做初始值。由于x_n=f(x_(n-1)),如果{x_n}有极限,那么这个极限就是方程x=f(x)的解,方程x=f(x)的解也叫做函数f(x)的不动点。阿基米德求π的方法,与计算内接(或外切)于单位圆的正n边形的周长当n趋于无  相似文献   

17.
几乎所有的微积分教科书都论述了下列复合函数的连续性定理: 设函数y=g(z)在z_0点连续,且函数z=f(x)在点x_0连续,z_0=f(x_0),又设复合函数y=g[f(x)]在点x=x_0的某一领域内是有定义的,则复合函数y=g[f(x)]必在x_0处连续。上述定理告诉我们:连续函数的复合函数仍旧是连续函数。现在问:关于复合函数的极限问题,也有类似的结论吗? 为回答这个问题,我们给出如下定理。  相似文献   

18.
求复合函数的极限,常用其连续性定理。 定理一 若u=g(x)在x_0连续,且u_0=g(x_0);y=f(u)在u_0连续,则复合函数y=f〔g(x)〕在x_0连续。即 lim f〔g(x)〕=f〔g(x_0〕=f〔 lim g(x_0)〕,于是,在f(u)和g(x)都连续的条件下,可利用交换极限号lim和函数号f,求复合函数f〔g(x)〕的极限,如  相似文献   

19.
一、原理若y=f(x)+g(x),仅当f(x),g(x)同时在某个x_0处取得最大(小)值,则在x_0处y取最大(小)值f(x_0)+g(x_0)。二、应用举例例1 求y=sin~2x+(2/(sin~2x)最值。解:y=(sin~2x+(1/(sin~2x)))+(1/(sin~2x)。设f(x)=sin~2x+(1/(sin~2x)≥2,g(x)=(1/(sin~2x)≥1。  相似文献   

20.
一、函数的极大值(或极小值)、最大值(或最小值)。极大值(或极小值):函数y=f(x)在点x_0的附近有定义,并且f(x_0)的值比在x_0附近所有各点的函数值都大(或都小),那么f(x_0)是函数f(x)的一个极大值(或极小值)。最大值(或最小值):f(x_0)是函数y=f(x)在点x_0的函数值,如果f(x_0)≥f(x)(或f(x_0)≤f(x)),对于定义域内的任意x都成立,那么f(x_0)是函数f(x)的最大值(或最小值)。注意: 1.极值是一个局部概念,只研究f(x_0)与点x_0左右邻近的点的函数值进行大小比较。最值是一个整体概念,是在整个定义域内比较函数值的大小。 2.在整个定义域内,如果有极大值(或极小值),其极大值(或极小值)有可能不止一个。如果  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号