首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
立几课本(必修)习题四第11题: 经过一个角的顶点引这个角所在平面的斜线。如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线。  相似文献   

2.
一道错题     
证明:经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.这是现行高中教材《立体几何》第31页的第11题,  相似文献   

3.
《立体几何》中一道习题引发的问题河南省嵩县教育局教研室王书合《立体几何》(必修)P.31习题四第问题为:“经过一个角的顶点引这个角所在平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.”此题的结论是不对的....  相似文献   

4.
立几课本中第33页11题: 经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线. 立几课本中第122页第3题:AB和平面a所成角是θ1,AC在平面a内,AC和AB的射影AB'所成角θ2,设∠BAC=θ,求证:cosθ1·cosθ2=cosθ.(如图1)  相似文献   

5.
高中《立体几何》(必修)以下简称课本)P.31第11题: 经过一个角的顶点引这个角所在平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线. 这是一道安排在三垂线定理后的题目.笔者不用三垂线定理,对这个题目作出证明.然后将这个命题演变,得出三垂线定理的逆定理,再利用三垂线定理的逆定理,对直线和平面垂直的判定定理作一个简捷的证明.  相似文献   

6.
下面三题都是高中《立体几何(必修)》教材中的习题. 题目1 如图,AB和平面α成的角是θ_1,AC在平面α内,AC和AB的射影AB′,所成角为θ_2,设么∠BAC=θ.求证: cosθ_1·cosθ_2=cosθ.(P.117第3题) 题目2 经过一个角的顶点引这个角所在的平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.  相似文献   

7.
全日制普通高级中学教科书(必修)第二册(下B)第28页第6题:经过一个角的顶点引这个角所在平面的斜线,设它和已知角两边的夹角为锐角且相等,求证:这条斜线在平面内的射影是这个角的平分线.  相似文献   

8.
求斜线和平面所成角的问题,历来都被考试命题所青睐.它是教学的重点,也是一个难点.解决这类问题的“三步曲”是,作角、证角、计算,其中作角是关键.解题时常会因判断不准,作角位置不正确,导致解题失败.本文介绍一个斜线和平面所成角的性质,可避免作角、证角的麻烦,而使问题顺利解决.定理 经过一个角的顶点,引这个角所在平面的斜线,如果斜线和这个角的两边的夹角为α、β,这个角为γ,那么这条斜线与平面所成的角是δ=arccoscos2α+cos2β-2cosαcosβcosγsinγ.图1证明 如图1,∠γ所在…  相似文献   

9.
确定点在平面上的射影位置,对于确定空间中的角和距离以及判断线、面垂直都有非常重要的作用,而这正是立体几何教学的重点内容.我们在归纳、总结平时教学的基础上整理出点在平面上的射影四种常用位置关系:1 斜线上一点到平面上的射影,必在这斜线在平面内的射影上2.1 过一个角的顶点引这个角所在平面的一条斜线,若斜线与角的两边夹角相等,则这斜线上的点在平面内  相似文献   

10.
立体几何模型:“过一个角的顶点,引这个角所在平面的斜线,且斜线与这个角的两边成等角”在近年全国高考中屡有考查,说明该模型的典型性、重要性.下面对它进行探究,推导两个孪生公式,以使其在解题中更好地发挥作用.  相似文献   

11.
中学数学教学大纲指出:要使学生学好基础知识和掌握基本技能,首先要使学生正确理解数学概念;有许多例子足以说明目前学生在掌握概念这方面存在较多的问题。例如对填空题“经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,则斜线在平面上的射影是__”。回答为“这个角的平分纷”者有之,回答成“这个角的平分线或反向延长线”者有之,而正确答案应该是“这个角平分线所在真线”,又例如“请判断函数f(x)=(x-1),((1 x)/(1-x))~(1/2)的奇偶性”。为数不少的学生根本不考虑函数的定义域是否具有关于原点对称这个特征,由f(x)=f(-x),就断定f(x)是偶函数。再例如,在利用不等式性质求函数最大(小)值时,  相似文献   

12.
直线与平面所成角是空间角的一种重要类型。也是高考常考的题型,它是斜线和斜线在平面内的射影的夹角,是这条斜线和这个平面内任一直线所成的角中最小的角,它的求法主要有以下几种。  相似文献   

13.
图1是证明“斜线和平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角”的示意图.当我们完成这一重要结论的证明后,重新审视此图,发现:  相似文献   

14.
斜线和平面所成的角是高考的常考内容,怎样求斜线和平面所成的角的大小呢?本文介绍如下四种策略.1.利用定义一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角,寻找斜线和平面所成的角,要在斜线上任取一点作平面的垂线,垂足的定位至关重要.【例1】(2005年高考全国卷Ⅱ)如图,四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点.(Ⅰ)求证:EF⊥平面PAB;(Ⅱ)设AB=2BC,求AC与平面AEF所成的角的大小.(Ⅱ)解1,如图1,延长AE、BC相交于G,连结FG,则FG为平面PBC与平面AEF的交线,而证…  相似文献   

15.
定义 平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.  相似文献   

16.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

17.
一、三余弦公式简介平面内的任意一条直线与这个平面的一条斜线所成的角的余弦值,等于这两条直线分别与该斜线在这个平面内的射影所成角的余弦值之积。如图1,设直线nα,斜线l在平面α内的摄影为m,l∩α=A,斜线l与平面α所成角为θ1,射影m与直线n所成角为θ2,斜线l与直线n所成角为θ,  相似文献   

18.
丁菁 《中学理科》2000,(1):25-30
斜线和平面所成的角是用这条斜线和平面内的直线中所成的最小角来定义的,即斜线和它在平面上的射影所成的锐角,叫做斜线和平面形成的角。  相似文献   

19.
若平面的一条斜线与这个平面所成的角为α,平面内的一条直线与这条斜线及其射影所成的锐角(或直角)分别为θ及β.则有cosθ=cosα·cosβ。  相似文献   

20.
当直线与平面平行或垂直时,直线与平面所成的角为0&;#176;或90&;#176;,因此,一般地,总是求斜线与平面所成的角.求斜线与平面所成的角,就是要找到斜线的射影,通常在斜线上除斜足外取一特殊点P,过点P作平面的垂线,关键是如何找垂足,因此点P的选择以方便找垂足为原则.求斜线与平面所成的角,还可  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号