首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the problem of global exponential stability analysis for a class of delayed recurrent neural networks. This class includes Hopfield neural networks and cellular neural networks with interval time-delays. Improved exponential stability condition is derived by employing new Lyapunov-Krasovskii functional and the integral inequality. The developed stability criteria are delay dependent and characterized by linear matrix inequalities (LMIs). The developed results are less conservative than previous published ones in the literature, which are illustrated by representative numerical examples.  相似文献   

2.
This paper is devoted to investigating the robust stochastic exponential stability for reaction-diffusion Cohen–Grossberg neural networks (RDCGNNs) with Markovian jumping parameters and mixed delays. The parameter uncertainties are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Some criteria for delay-dependent robust exponential stability of RDCGNNs with Markovian jumping parameters are established in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing Matlab LMI toolbox. Numerical examples are provided to demonstrate the efficiency of the proposed results.  相似文献   

3.
In this paper, the global robust exponential stability problem for a class of uncertain inertial-type BAM neural networks with both time-varying delays is focused through Lagrange sense. The existence of time-varying delays in discrete and distributed terms is explored with the availability of lower and upper bounds of time-varying delays. Firstly, we transform the proposed inertial BAM neural networks to usual one. Secondly, by the aid of LKF, stability theory, integral inequality, some novel sufficient conditions for the global robust exponential stability of the addressed neural networks are obtained in terms of linear matrix inequalities, which can be easily tested in practice by utilizing LMI control toolbox in MATLAB software. Furthermore, many comparisons of proposed work are listed with some existing literatures to get less conservatism. Finally, two numerical examples are provided to demonstrate the advantages and superiority of our theoretical outcomes.  相似文献   

4.
This paper investigates the problem for stability of neutral-type dynamical neural networks involving delay parameters. Different form the previously reported results, the states of the neurons involve multiple delays and time derivative of states of neurons include discrete time delays. The stability of such neural systems has not been given much attention in the past literature due to the difficulty of finding Lyapunov functionals which are suitable for stability analysis of this type of neural networks. This paper constructs a generalized Lyapunov functional by introducing new terms into the well-known Lyapunov functional that enables us to conduct a theoretical investigation into stability analysis of delayed neutral-type neural systems. Based on this modified novel Lyapunov functional, sufficient criteria are derived, which guarantee the existence, uniqueness and global asymptotic stability of the equilibrium point of the neutral-type neural networks with multiple delays in the states and discrete delays in the time derivative of the states. The applicability of the proposed stability conditions rely on testing two basic matrix properties. The constraints impose on the system matrices are determined by using nonsingular M-matrix condition, and the constraints imposed on the coefficients of the time derivative of the delayed state variables are derived by exploiting the vector-matrix norms. We also note that the obtained stability conditions have no involvement with the delay parameters and expressed in terms of nonlinear Lipschitz activation functions. We present a constructive numerical example for this class of neural networks to give a systematic procedure for determining the imposed conditions on the whole system parameters of the delayed neutral-type neural systems.  相似文献   

5.
This paper proposes new delay-dependent synchronization criteria for coupled stochastic neural networks with time-varying delays and leakage delay. By constructing a suitable Lyapunov–Krasovskii's functional and utilizing Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by using the LMI toolbox in MATLAB. Three numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

6.
The problem of bifurcation for delayed fractional neural networks(FNNs) with single delay has been considerably researched. It is more realistic to portray the dynamical properties of FNNs with multiple delays, but this has been not investigated before. This paper attempts to conduct a research on the stability and bifurcation for a FNN with double delays. The criteria of heterogeneous delays-induced bifurcations are decidedly procured. Then, the influence of solitary delay on the bifurcation point is ulteriorly displayed by delicate computation. It is demonstrated that the stability performance of the proposed FNN can be undermined or enhanced by varying properly time delay. Finally, illustrative examples are addressed to validate the availability of the proposed results.  相似文献   

7.
In this paper, the asymptotic stability analysis is investigated for a kind of discrete-time bidirectional associative memory (BAM) neural networks with the existence of perturbations namely, stochastic, Markovian jumping and impulses. Based on the theory of stability, a novel Lyapunov–Krasovskii function is constructed and by utilizing the concept of delay partitioning approach, a new linear-matrix-inequality (LMI) based criterion for the stability of such a system is proposed. Furthermore, the derived sufficient conditions are expressed in the structure of LMI, which can be easily verified by a known software package that guarantees the globally asymptotic stability of the equilibrium point. Eventually, a numerical example with simulation is given to demonstrate the effectiveness and applicability of the proposed method.  相似文献   

8.
In this paper, the exponential stability of delayed neural networks (DNNs) with delayed sampled-data inputs is investigated via extended bilateral looped functional approach. Firstly, a new extended bilateral looped functional is constructed, which is differentiable at sampling intervals and can relax the constraints on positive definiteness when compared to traditional functionals. Then, less conservative criteria for exponential stability of DNNs with delayed sampled-data inputs expressed through linear matrix inequalities (LMIs) are obtained. Furthermore, the results are extended to T–S fuzzy DNNs with delayed sampled-data inputs, where corresponding stability conditions are likewise derived. Finally, two simulation examples are given to illustrate the validity of the main results.  相似文献   

9.
This paper investigates the exponential stability problem for uncertain time-varying delay systems. Based on the Lyapunov-Krasovskii functional method, delay-dependent stability criteria have been derived in terms of a matrix inequality (LMI) which can be easily solved using efficient convex optimization algorithms. These results are shown to be less conservative than those reported in the literature. Four numerical examples are proposed to illustrate the effectiveness of our results.  相似文献   

10.
This paper is concerned with the stability analysis problem for a class of delayed stochastic recurrent neural networks with both discrete and distributed time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to ensure the global, robust asymptotic stability for the addressed system in the mean square. The conditions obtained here are expressed in terms of LMIs whose feasibility can be checked easily by MATLAB LMI Control toolbox. In addition, two numerical examples with comparative results are given to justify the obtained stability results.  相似文献   

11.
In this paper, we study the synchronization problem of a class of chaotic neural networks with time-varying delays and unbounded distributed delays under stochastic perturbations. By using Lyapunov-Krasovskii functional, drive-response concept, output coupling with delay feedback and linear matrix inequality (LMI) approach, we obtain some sufficient conditions in terms of LMIs ensuring the exponential synchronization of the addressed neural networks. The feedback controllers can be easily obtained by solving the derived LMIs. Moreover, the main results are generalizations of some recent results reported in the literature. A numerical example is also provided to demonstrate the effectiveness and applicability of the obtained results.  相似文献   

12.
The switching signal design for global exponential stability of discrete switched systems with interval time-varying delay is considered in this paper. Some LMI conditions are proposed to design the switching signal and guarantee the global exponential stability of switched time-delay system. Some nonnegative inequalities are used to reduce the conservativeness of the systems. Finally, two numerical examples are illustrated to show the main result.  相似文献   

13.
This paper considers the synchronization problem of coupled chaotic neural networks with time delay in the leakage term and parametric uncertainties using sampled-data control. Motivated by the achievements from both the stability of neural networks with time delay in the leakage term and the synchronization issue of coupled chaotic neural networks with parametric uncertainties, Lyapunov stability theory combining with linear matrix inequalities is employed to derive sufficient criteria ensuring the coupled chaotic neural networks to be completely synchronous. This paper presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed sampled-data controller.  相似文献   

14.
This paper is concerned with a class of neutral delay BAM neural networks with time-varying delays in leakage terms. Some sufficient conditions are established to ensure the existence and exponential stability for such class of neural networks by employing the exponential dichotomy of linear differential equations, fixed point theorems and differential inequality techniques. An example is provided to show the effectiveness of the theoretical results. The results of this paper are completely new and complementary to the previously known results.  相似文献   

15.
Based on the generalized probability-interval-decomposition approach, the delay-dependent stability analysis for a class of T-S fuzzy systems with stochastic delays is investigated. The information of the probability distribution of stochastic delay is fully exploited and a series of sufficient stability criteria are obtained. A rigorous mathematical proof is provided that the conservatism of the proposed stability criteria can be reduced progressively by increasing the number of the probability interval. Based on this, a novel hierarchy of LMI conditions is established. It is rigorously proved that with the same decomposition of probability interval, the conservatism of the proposed stability criteria is less than the one obtained by time-varying delay decomposition approach. The computation burden of the proposed method is analyzed and compared with one of the time-varying delay decomposition approach. Finally, a numerical example is given to illustrate the validness and effectiveness of the proposed approach.  相似文献   

16.
This paper considers existence, uniqueness and the global asymptotic stability of fuzzy cellular neural networks with mixed delays. The mixed delays include constant delay in the leakage term (i.e., “leakage delay”), time-varying delays and continuously distributed delays. Based on the Lyapunov method and the linear matrix inequality (LMI) approach, some sufficient conditions ensuring global asymptotic stability of the equilibrium point are derived, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. In addition, two numerical examples are given to illustrate the feasibility of the result.  相似文献   

17.
In this paper, an auxiliary model-based nonsingular M-matrix approach is used to establish the global exponential stability of the zero equilibrium, for a class of discrete-time high-order Cohen–Grossberg neural networks (HOCGNNs) with time-varying delays, connection weights and impulses. A new impulse-free discrete-time HOCGNN with time-varying delays and connection weights is firstly constructed, and the relationship between the solutions of original systems and new HOCGNNs is indicated by a technical lemma. From which, the global exponential stability criteria for the zero equilibrium are derived by using an inductive idea and the properties of nonsingular M-matrices. The effectiveness of the obtained stability criteria is illustrated by numerical examples. Compared with the previous results, this paper has three advantages: (i) The Lyapunov–Krasovskii functional is not required; (ii) The obtained global exponential stability criteria are applied to check whether a matrix is a nonsingular M-matrix, which can be conveniently tested; (iii) The proposed approach applies to most of discrete-time system models with impulses and delays.  相似文献   

18.
This paper discusses the stabilization criteria for stochastic neural networks of neutral type with both Markovian jump parameters. First, delay-dependent conditions to guarantee the globally exponential stability in mean square and almost surely exponential stability of such systems are obtained by combining an appropriate constructed Lyapunov–Krasovskii functional with the semi-martingale convergence theorem. These conditions are in terms of the linear matrix inequalities (LMIs), which can be some less conservative than some existing results. Second, based on the obtained stability conditions, the state feedback controller is designed. Finally, four numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.  相似文献   

19.
This paper focuses on the issue of finite-time stability for a general form of nonlinear systems subject to state-dependent delayed impulsive controller. Based on the Lyapunov theory and the impulsive control theory, sufficient conditions for finite-time stability (FTS) and finite-time contractive stability (FTCS) are obtained. Additionally, we apply theoretical results to finite-time synchronization of chaotic systems and design the effective state-dependent delayed impulsive controllers in terms of techniques of linear matrix inequality (LMI). Finally, we present two numerical examples of finite-time synchronization of cellular neural networks and Chua’s circuit to verify the effectiveness of our results.  相似文献   

20.
This paper is concerned with the problem of global robust asymptotic stability for delayed neural networks with polytopic parameter uncertainties and time-varying delay. A delay-dependent and parameter-dependent robust stability criterion for the equilibrium of delayed neural networks in the face of polytopic type uncertainties is presented by using a parameter-dependent Lyapunov functional and taking the relationship between the terms in the Leibniz–Newton formula into account. This criterion, expressed as a set of linear matrix inequalities, requires no matrix variable to be fixed for the entire uncertainty polytope, which produces a less conservative stability result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号