共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
数形结合是中学数学中四种重要数学思想之一.数形结合与数形转化的目的是为了发挥形的直观性,或发挥数的精密性,两者相辅相成.以下举例说明数形结合思想在平面向量有关问题中的应用,供同学们学习参考. 相似文献
3.
利用向量数量积可以解决有关角度、距离、位置关系等问题,另一方面,向量的运算都有它的几何意义,一些与向量有关的计算,用几何方法也可以解决.下面几道高考题,通常是利用向量数量积求解的,但我们看到利用向量运算的几何意义,也可以在图形中找到解决问题的方法. 相似文献
4.
数形结合是中学数学中四种重要数学思想之一.数形结合与数形转化的目的是为了发挥形的直观性,或发挥数的精密性,两者相辅相成,以下举例说明数形结合思想在平面向量有关问题中的应用,供同学们学习参考. 相似文献
5.
6.
许年堤 《新课程学习(社会综合)》2012,(6)
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围. 相似文献
7.
8.
解决数学问题时,通过图形表征与代数关系的转化,以数辅形,以形助数,使代数问题化繁为简,化难为易,化抽象为具体,这种转化思想是数学的核心思想之一——数形结合思想. 相似文献
9.
解析几何与向量是高中数学两个重要部分,数形结合是这两部分的共同特点.由于向量既能体现“形”的直观特征,又具有“数”的运算性质,因此,向量是数形结合和转换的桥梁.对于解析几何中图形的重要位置关系(如平行、垂直、相交、三点共线等)和数量关系(如距离、角等),向量都能通过其坐标运算来进行刻划,这就为在解析几何解题中充分运用向量方法创造了条件. 相似文献
10.
徐军 《试题与研究:高中理科综合》2019,(13):0064-0065
任何学习都包括知识积累和能力训练两个方面’数学学习 也不例外。在数学学习上“能力的训练比起单纯知识的堆积要 重要得多。对于教师的教学而言,传授现成的知识,也许容易 些“但是要在大量种类繁多的数学问题中“找出问题的共同特 征“提炼出解决问题时思考的途径和方法“将这些途径和方法 传授给学生,要困难地多,也却有着巨大的价值。 相似文献
11.
采用光沉积-液相化学法调节电子流向,构建了直接Z型TiO2/Ag/Ag3PO(4 )(TAAPO)光催化材料.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱仪以及光致发光(PL)光谱仪等手段对其进行表征,并对其在可见光照射下催化降解环丙沙星(CIP)的性能进行了研究.结果表明,当水体pH为3.0,催化剂分散浓度为0.3 g/L,CIP的初始浓度为15 mg/L时,光催化降解体系能够取得最佳的去除效果.在该组条件下,光照120 min CIP的降解率约为99%,并且在经历4个循环后仍然保持了良好的降解效果.在光催化降解CIP的过程中,主要反应活性物种为超氧自由基(·O2 相似文献
12.
现阶段教学实践中需要教师灵活地引导学生进行数形结合,把晦涩的数学问题转化为直观问题,学生把问题解决了,获得成功的体验,能增强学习数学的信心。尤其对于有探索性的问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦。 相似文献
13.
<正>解决数学问题时,通过图形表征与代数关系的转化,以数辅形,以形助数,使代数问题化繁为简,化难为易,化抽象为具体,这种转化思想是数学的核心思想之一——数形结合思想.数形结合思想,将较为复杂的代数问题转化为直观的几何问题,有利于发散学生思维,拓宽解题思路,提高他们的解题能力.下面通过几个具体例子探讨数形结合在解决不 相似文献
14.
向量身具数和形的双重身份,成为了高中数学中各章节知识的媒介,它与各个知识的联系比较紧密.近年对向量自身的考查难度一般不大,只要掌握了平面向量的基础知识就可顺利作答.但一旦涉及与其他知识的结合时, 相似文献
15.
16.
17.
叶建红 《宁德师专学报(自然科学版)》2012,24(3):315-317,324
在中职数学教学中适时渗透数形结合思想,对学生理解和解决数学问题有很大益处.阐述了数形结合思想的地位和重要性,以及中职数学教材中数形结合的相关知识点,详述了如何实现数形结合的实践教学,以及相应的数形结合实例. 相似文献
18.
19.