首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
方法一:反函数法根据反函数的性质,一个函数若存在反函数,那么反函数的定义域就是原函数的值域.这样,从原函数表达式y=f(x)中,解出自变量x来,得到一个以y为变量,x为函数的新函数x=f-1(y),这个函数自变量y的取值范围,就是原函数y=f(x)的值域.这个方法一般适用于分子、分母都是一次式的分式函数.例1.求函数y=1-x2x+5的值域.分析:因为y=1-x2x+5=-12+722x+5图象为以点(-52,-12)为中心,平行于x轴,y轴两条相交线为渐近线的双曲线.从自变量x到函数y是一一映射,存在反函数.解:由y=1-x2x+5得x=1-5y2y+1,这个函数中,自变量y的取值范围是y≠-12.所以,原…  相似文献   

2.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

3.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

4.
例1求函数y=x+5-x2√的最值.错解由y=x+5-x2√得2x2-2yx+(y2-5)=0.∵xR,∴Δ=4y2-8(y2-5)≥0,-10√≤y≤10√,∴ymax=10√,ymin=-10√.剖析把y=x+5-x2√两边平方后得(y-x)2=5-x2.显然,5-x2≥0,x的范围没有改变.错因是改变了值域.由y-x=5-x2√知y≥x,而把y-x=5-x2√两边平方后,值域发生了改变.正解由y=x+5-x2√得2x2-2yx+(y2-5)=0.∵xR,∵xR,∴Δ=4y2-8(y2-5)≥0,∴-10√≤y≤10√.又∵y≥x,-5√≤x≤5√,∴y≥-5√,-5√≤y≤10√.∴ymax=10√,ymin=-5√.例2求函数y=x2+2x+2x2+2x+5√的最小值.错解令t=x2+2x+5√,则x2+2x=t2-5.∴y=t2…  相似文献   

5.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

6.
反函数是中学数学的一个难点,在高考中几乎年年出现,虽说其解题步骤简单:1.把函数看作方程,解出x;2.对调x、y;3.原函数的定义域、值域是反函数的值域、定义域.然而在实际解题过程中,经常出现以下误区.误区1:求反函数时忽略原函数的定义域.例1:求函数y=x2+4x+3(x≤-2)的反函数.错解:由已知x2+4x+(3-y)=0,得x=-2±"1+y.∴所得反函数为y=-2±"1+x(x≥-1).剖析:上述解法忽视了原函数的定义域(-∞、-2],故在求得反函数时,应舍去y=-2+"1+x.误区2:求反函数时,忽略原函数的值域.例2:求函数y="x2-2x+4(x≤0)的反函数.错解:因为y2=x2-2x+4,y2-3=(x-1)2…  相似文献   

7.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

8.
求函数值域问题是高中数学的重点和难点,也是高考的热点.本文对求函数值域常用方法作些归纳,供同学们参考.一、分离常数法例1求函数y=x2-xx2-x+2的值域.解:y=x2x-2-x+x2=1-x2-2x+2,而x2-x+2=x-212+74≥47,所以0相似文献   

9.
有一类函数的值域或最值可用实系数一元二次方程的根的判别式Δ去求解 .在解题过程中 ,我们要小心使用Δ .例 1 求函数 y =x2 -x - 1x2 -x 1(x∈R)的值域 .错解 :原式可化为 (y - 1)x2 - (y - 1)x y 1=0 .因为x∈R ,所以Δ =[- (y- 1) ]2 - 4 (y - 1) (y 1)≥ 0 ,解得 - 53≤y≤ 1,故原函数的值域为 - 53≤y≤ 1.分析原式在化为关于x的方程 (y - 1)x2 - (y - 1)x y 1=0后 ,在使用Δ时 ,忽略了二次项的系数 y - 1≠ 0的条件 ,须知只有限定 y - 1≠ 0时 ,才能用根的判别式Δ去求解 .正解 :因为x2 -x 1=x - 122 34≠ 0 ,所以原式可化…  相似文献   

10.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

11.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

12.
反函数是中学数学教材中的难点之一,在教学中我们常会遇到对反函数定义理解不深不透、解题思路不清、解答步骤不全等错误,严重影响学生对这部分知识的掌握.下面本人将以函数中常见的几种典型错误进行剖析,与同行磋商.误区一:忽视函数存在反函数的条件案例1函数y=x2(x∈R)是否存在反函数,若存在,求反函数;若不存在,说明理由.错解函数存在反函数.当x≥0时,由y=x2得x=y,所以x≥0时,反函数为y=x(x≥0);当x<0时,由y=x2得x=-y,所以x<0时,反函数为y=-x(x>0).剖析忽视函数存在反函数的条件,从而盲目地进行分类讨论求反函数.正解∵y=x2(x∈R)不是一一对应函数,∴y=x2不存在反函数.解后反思只有从定义域到值域上的一一映射所确定的函数才有反函数.误区二:错解反函数的解析式案例2求函数y=3x2-1(x≤0)的反函数的表达式.错解由y=3x2-1,得x2=(y+1)3,∴x=(y+1)3或x=-(y+1)3,∴反函数的表达式为y=(x+1)3或y=-(x+1)3.剖析在求解过程中没有考虑原函数中x≤0这个条件导致出现两个答案的错误.正解由y=3x2-1,得x2=(y+1)3,∵x≤0,∴x...  相似文献   

13.
一策——直接法有的函数的结构并不复杂,可以通过基本函数的值域及不等式性质直接观察出函数的值域.【例1】求函数y=x21 2的值域.解:∵x2≥0∴x2 2≥2∴0相似文献   

14.
研究函数,常要求函数值域。本文介绍一些无理函数值域求法。 1.y=(ax b)~(1/2)(a≠0)型分析 这种类型的无理函数是最基本的。从观察不难看出值域为{y|y≥0且y∈R}. 2.y=px q±(ax b)~(1/2)型 例1 求y=x 4 (2x 4)~(1/2)的值域。 解令t=(2x 4)~(1/2)(t≥0)则x=(t~2-4)/2(t≥0). ∴原函数为y=(t~2-4)/(2) 4 t=((t 1)~(2) 3)/2 (t≥0), ∴y≥2,原函数值域为{y|y≥2且y∈R}.  相似文献   

15.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

16.
在一个函数关系式中,如果含自变量的一边是两个二次根式的和,且这两个二次根式的平方和等于一个正实数,那么可用方差公式求出这个函数的最大值.下面举例说明.例1求函数y=3-x 2 x的最大值.解由原函数式可知y>0.∵3-x和2 x这两个数的方差是:s2=12[(3-x)2 (2 x)2-22y2]≥0.整理,得10-y2≥0,即y2≤10,∴y最大值=10.例2求函数y=4x3 5 13-4x3的最大值.解由原函数式可知y>0.∵4x3 5和13-4x3这两个数的方差是:s2=21[(4x3 5)2 (13-4x3)2-22y2]≥0.整理,得36-y2≥0,即y2≤36,∴y最大值=6.例3求函数y=2x2 3x 1 7-2x2-3x的最大值.解由原函数式可知y>0.∵…  相似文献   

17.
一单调性法例1 求函数r=log0.5(2x-x2+3)的值域. 解:∵2x-x2+3=-(x-1)2+4,∴0<2x-x2+3≤4,又0.5<1, 由r=log0.5x的单调性可知值域为[-2,+∞). 点评:利用函数的单调性是求函数值域的一种常见方法. 二反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域.  相似文献   

18.
函数是中学教学中的重点内容之一 .由于函数的值域在教材中阐述其求法甚微 ,因而有不少的同学在求函数的值域时 ,无从着手 .为了帮助同学们在求值域时有一套较系统的方法 ,在这里归纳几种常用方法 ,供读者参考 .1 反函数法如函数 y =f (x)有反函数 ,则 y =f -1 (x)的定义域也就是 y =f (x)的值域 .例 1 求 y =f (x) =2 x2 x + 1的值域 .解 :原函数的反函数为y =f -1 (x) =log2x1-x.其定义域由 x1-x>0来确定 ,所以 0 相似文献   

19.
一、先看几道用判别式解题造成错误的实例 例1 求函数的值域。(见苏州大学《中学数学》统辑部94年发行《高三数学与测试》一书p14页)。 为具体起见,改用数字系数,求函数的值域。 解:∵原函数的定义域是:{x|x≠1且x≠-3,x∈R},将原函数化为则有①当y≠1时,得(2y 3)~2 4(y-1)(3y 2)≥0’整理得(4y 1)~2≥0,故y为≠1的一切实数;  相似文献   

20.
20 0 1年全国高中数学竞赛第一试第 11题为 :函数 y =x + x2 - 3 x+ 2的值域为.下面提供五种解法 ,以飨读者 .解法 1 移项得 y- x=x2 - 3 x+ 2 ,上式等价于 (y- x) 2 =x2 - 3 x+ 2 ,y- x≥ 0 .12由 1得 x=y2 - 22 y- 3 ,代入 2得 y- y2 - 22 y- 3≥ 0 ,即 (y- 1) (y- 2 )2 y- 3 ≥ 0 ,解得 1≤ y<32 或y≥ 2 .故原函数的值域为 [1,32 )∪ [2 ,+∞ ) .解法 2 原函数式可变形为 y=x+(x- 32 ) 2 - 14,∵ x2 - 3 x+ 2≥ 0 ,∴ x≤ 1或 x≥ 2 .令 t=x- 32 ,则 t≤ - 12 或 t≥ 12 ,y=t+ 32 + t2 - 14.当 t≥ 12 时 ,y是 t的增函数 ,当 t=12时 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号