首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本就二元一次不等式与二元一次不等式组的几何表示进行了探讨。  相似文献   

2.
二元一次不等式Ax+By+C〉0(或〈0)(A^2+B^2≠0)在平面直角坐标系中表示直线Ax+By+C=0右上方或右下方或左上方或左下方的某个平面区域,在教材[1]中采用的是“直线定边界,特殊点定区域”方法来处理的,  相似文献   

3.
徐瑞婷 《中学教研》2004,(1):F003-F004
新教材第二册(上)P59介绍了二元一次不等式表示平面区域的知识,说明了在直线Ax By C=0的某一侧选取一个特殊点(x0,y0),从Ax0 By0 C的正负来判断Ax十By C>0表示直线哪一侧的平面区域的方法笔者在学习过程中发现一个更为简洁快速的判断方法,介绍如下:  相似文献   

4.
本文通过探究点与直线的位置关系,得出二元一次不等式表示的平面区域,进而得到二元一次不等式(组)所表示的平面区域.在学习过程中,使学生体会到数形结合的数学思想,发展学生应用数学的意识;同时让学生进行数学探究,体验知识的形成、应用过程,鼓励学生通过观察类比发现问题、分析问题、解决问题,增强学生数学思维情趣,形成学习数学知识的积极态度.  相似文献   

5.
二元一次不等式表示的平面区域常用“以线定界,以点定域”来确定.在实际作图中,尤其是线性规划中画可行域,区域不是一下子就能找得到的.有没有一种简单易行的方法呢?例如,一看到式子z-y+1〈0就知道其所表示的区域在直线x-y+1=0左上方.  相似文献   

6.
一、教学内容分析 本节课是《普通高中课程准标实验教科书·数学(必修5)》(人教A版)第三章不等式中的二元一次不等式(组)表示平面区域第一课时.主要内容是二元一次不等式的几何意义,二元一次不等式(组)与由若干直线围成的平面区域互相转化,它是进一步学习简单线性规划内容必备知识.  相似文献   

7.
文[1]中经探究得出了下面两个无理不等式: 若a1,a2,L,an∈R ,n>1,则  相似文献   

8.
二元一次不等式表示的区域常用于线性规划.事实上,它也可用于去掉点到直线距离公式中的绝对值符号,达到简化运算的目的.  相似文献   

9.
课程目标要求提高学生发现和提出问题、分析和解决问题的能力.在二元一次不等式表示的平面区域教学中,用学生最熟悉、最真实的情境,归纳中发现和提出符号问题;通过追问和不断地抽象,辅之于数学语言的转换,分析和解决问题.  相似文献   

10.
11.
高中数学第二册(上)(试验修订本·必修)P11习题6.2.3 已知a、b都是正数,求证2/1/a+1/b≤√ab≤a+b/2≤√a2+b2/2当且仅当a=b时等号成立.  相似文献   

12.
13.
证明二元均值不等式链的又两个几何模型   总被引:1,自引:0,他引:1  
不妨设a〉b〉0,则有均值不等式链:文[1]~[4]分别给出了这个链的几何证明,本文再提供两个几何模型证明.  相似文献   

14.
本文对数学分析课程中的一个不等式问题进行了比较详尽的讨论,从不同的侧面对该问题做了剖析,并指出了继续深入讨论的问题。  相似文献   

15.
一元一次不等式(组)不仅是初中代数的一个重要内容,而且是解决数学问题的一种非常有用的工具.同学们学了一元一次不等式(组)的解法之后,有必要了解它在解题中的广泛应用。  相似文献   

16.
《全日制普通高级中学教科书》(新教材人民教育出版社)中P.57有这样一段文字: ①“我们猜想:对直线L(x y-1=0)右上方的点(x,y),x y-1>0成立;对直线L(x y-1 =0)左下方的点(x,y),x y-1<0成立”.教材的这一段文字不利于学生得出一般性的结论.试想:对于不等式x-y-1>0来说,根据上述文字,学生会猜想:“对于直线L(x-y-1=0)左上方的点(x, y),x-y-1>0成立;对于直线L(x-y-1=0)右下方的点(x,y),x-y-1<0成立”.而事实上,不等式x-y-1>0却表示直线x-y-1=0的右下  相似文献   

17.
笔者所在教研组申请了省级课题“数学教材的二次开发”,课题研究过程中正好参加了市里的青年教师基本功大赛,在上课这一环节笔者与此课题有了一次亲密接触.以下为二元一次不等式组和简单的线性规划问题的第一节课——二元一次不等式表示的平面区域一课的课堂构思.  相似文献   

18.
19.
给出了二元二次方程组几种常用解法的几何意义。  相似文献   

20.
《中学理科》2007,(3):13-14,38,39
1.如果关于x的不等式(a+1)x〉a+1的解集为x〈1,那么a的取值范围是( ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号