首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题 设{a_n}为等比数列,且S=a_1 a_2 … a_n,T=1/a_1 1/a_2 … 1/a_n,求{a_n}的前n项之积。 对于该题,在很多资料上都出现过,错误解答广为流行,给出的答案都是(S/T)~(n/2)。因  相似文献   

2.
高中代数下册(必修本)第七页例2: 已知:a、6∈R~+,并且a≠b。求证:a~5+b~5>a~3b~2+a~2b~3 由其指数特征及证明中的差式(a~5+b~5)-(a~3b~2+a~2b~3)=(a~2-b~2)(a~3-b~3)不难得到命题一:若a_1,a_2∈(?)。m,k∈N,m>k, 则 a_1~m+a_2~m≥a_1~ka_2~(m-k)+a_1~(m-k)a_2~k(当且仅当a_1=a_2时等号成立)。证法与上类似。运用命题一又可得到命题二:若a_1,a_2,……,a_n∈R~-,m,k∈N,m>k,则 (a_1~m+a_2~m+……+a_n~m)/n≥(a_1~k+a_2~k+……+a_n~k)/n。a_1~(m-k)+a_2~(m-k)+……+a_n~(m-k)/n(当且仅当a_1=a_2=……=a_n时等号成立)。证明;把对a_1,a_2,……,a_n两两运用命题一得到的n(n-1)/2个不等式:a_1~m+a_2~m≥a_1~ka_2~(m-k)+  相似文献   

3.
命题:若a,b,c,是正数,且a+b+c=1则: 1/a+b+1/b+c+1/c+a≥9/2这一不等式循环对称,耐人寻味,可推广出如下命题: 命题一:若a_1+a_2+…+a_n=1,a_i>0,(i=1,2,…,n,)则: 当且仅当a_1+a_2=a_2+a_3=…=a_(n-1)+a_n=a_n+a_1时,等号成立。命题二:若a_1+a_2+…+a_n=i,a_i>0 (i=1,2,…,n),则:  相似文献   

4.
本文从一个基本初等不等式a~3+b~3+c~3≥3abc(a、b、c∈R~+)出发,利用凸函数的定义及性质,对它进行推广,得到了此不等式更广泛的形式:p_1a_1∑(pi)+p_2a_2∑pi+……+p_na_n∑pi≥(∑pi)(a_1)~(p_1)(a_2)~(P_2)…(a_n)~(p_n),当且仅当a_1=a_2=……=a_n时,等号成立。从本文给出的两个例子可以看出,此推广形式对一些不等式的证明十分方便。  相似文献   

5.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

6.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

7.
题 对于一数列{a_n},a_1=1,a_2=2,且a_n=2a_(n-1) a_(n-2),证明或否定:2(a_(n 1)~2 a_n~2)总可以表示为两个完全平方数的和。(这是某杂志上的一道难题征解。*号表示提出时未有解答)。  相似文献   

8.
已知a_1,a_2,…a_n和b_1,b_2,…b_n是实数,则(a_1b_1+a_2b_2+…+a_nb_n)~2≤(a_1~2+a_2~2+…+a_n~2)(b_1~2+b_2~2+…+b_n~2),并且在a_1/b_1=a_2/b_2=…=a_n/b_n等时取等号。上面的不等式叫做柯西不等式,课本中“求  相似文献   

9.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

10.
设n是大于1的自然数,a>0。易知a(?)1时,a-1与n-(1+a+…+a~(n-1))总是异号。所以, (a-1)[n-(1+a+…+a~(n-1))]≤0。即(a-1)(n-(1-a~n)/(1-a))≤0。整理,有a(n-a~(n-1))≤n-1。①显然,①式等号成立的充分必要是a=1。如果a_1,a_2,…,a_n是n个正数,在①中令a=(a_1/((a_1+a_2+…+a_n)/n)~(1/(n-1)),则有a_1~(1/(n-1))·(a_2+…+a_n)/(n-1)≤≤((a_1+a_2+…+a_n)/n)~(n~(n-1)),即((a_1+a_2+…+a_n)/n)~n≥≥a_1((a_1+a_2+…+a_n)/(n-1))~(n-1)。②再在①中令a=(a_2/(a_2+…+a_n)/(n-))~(1/(n-2)),重复上述步骤,并结合②,有  相似文献   

11.
<正>一、数列本身各部分知识的综合例1已知各项均为正数的数列{a_n}的前n项和为S_n,且满足S_1>1,6S_n=(a_n+1)(a_n+2),n∈N_+,求{a_n}的通项公式。解析:利用n≥2时S_n-S_(n-1)=a_n将已知条件6S_n=(a_n+1)(a_n+2),n∈N+转化为a_n与a_(n-1)之间的关系。由a_1=S_1=1/6(a_1+1)(a_1+2),解得a_1=1或a_1=2,由假设a_1=S_1>1,因此a_1=2。又由a_(n+1)=S_n+1-  相似文献   

12.
2001年全国高中数学联赛一试第13题为:设{a_n}为等差数列,{b_n}为等比数列,且b_1=a_1~2,b_2=a_2~2,b_3=a_3~2,(a_1相似文献   

13.
众所周知,对于数列{a_n}、{a′_n},若 a_n≤a′_n,则 S_n≤S′_n.据此证明形如“a_1 a_2 …… a_n相似文献   

14.
我们知道:如果a_i∈R~+ i=1,2,…,n,则((a_1+a_2+…a_n)/n≥(a_1a_2…a_n)~(1/n)当且仅当a_1=a_2=a_3…=a_n时取“=”号),被称为“均值定理”。许多极(最)值问题,利用这个平均值不等式常常很简洁地得到解决,本文通过数例。对利用其求极(最)值时常见错误进行剖析。  相似文献   

15.
<正>柯西不等式:设a_1,a_2,…,a_n;b_1,b_2,…,b_n是两组实数,则有n∑k=1a_k2·n∑k=1b_k2·n∑k=1b_k2≥(n∑k=1a_kb_k)2≥(n∑k=1a_kb_k)2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2,其中等号成立当且仅当a_1=a_2=…=a_n。  相似文献   

16.
<正>柯西不等式设a_1,a_2,…,a_n与b_1,b_2,…,b_n是两组实数,则有(a_1~2+a_2~2+…+a_n~2)(b_1~2+b_2~2+…+b_n~2)≥(a_1b_1+a_2b_2+…+a_nb_n)~2,当向量(a_1,a_2,…,a_n)与向量(b_1,b_2,…,b_n)共线时,等号成立[1].对于柯西不等式在n=2和n=3时有下面常见的代数形式和几何形式.设A,B与x,y是两组实数,则有  相似文献   

17.
一对等比数列前n项和的公式另一种证明的异议贵刊1985年第3期《等比数列求和公式的另一种证明》一文中,给出了等比数列前n项和的公式(以下称公式)的又一证法。转述如下: “对于等比数列由它的定义有 a_2/a_1=a_3/a_2=…=a_n/a_(n-1)=q (a_2+a_3+…+a_n)/(a_1+a_2+…+a_(n-1))=q (S_-a_1)/(S_n-a_n)=q (S_n-a_1)/(S_n-a_1q~(n-1))=q 整理得 S=a_1(1-q~n)/(1-q) (q≠1)”  相似文献   

18.
《高中数学第三册教学参考书》给出了算术——几何平均值不等式的两种归纳法证明。(其中一种是用反向归纳法)。但是,这两个证明都比较繁、从历史角度来看(参看[1]),用通常的数学归纳法来证明这一不等式也是较困难的事。因此,在这里我们介绍它的一些较简单的归纳法证明,供大家数学时选用,参考。算术——几何平均值不等式指: 定理当a_i,i=1,2,…,n,为正数时,有 (a_1 a_2 … a_n)/n≥(a_1a_2…a_n)~(1/n) (1)式中等号当且仅当a_1=a_2=…=a_n时成立, 为了方便,今后我们使用下列记号: A_n=(a_1 a_2 … a_n)/n,G_n=(a_1a_2…a_n)~(1/n) 当a_1=a_2=…=a_n时,(1)式中等号成立是显然的。故下面我们只须证明,当a_1,a_2,…,a_n不全相等时,必有A_n>G_n,即达目的。  相似文献   

19.
根据给出的数列的递推关系,求它的通项公式中,用特征方程求数列的通项公式,是非常有效的方法。例如,已知数列{a_n}具有关系a_1=3~(1/2),且a_(n+1)=1/2 a_n-3,求a_n的表达式,可用下面方法来解。∵a_(n+1)=1/2 a_n-3,把它两边同加上6,得a_(n+1)+6=1/2 a_n+3=1/2(a_n+6)。  相似文献   

20.
我们知道一n次方程的韦达定理是,方程a_0s~n+a_1x~(n-1)+……+a_n=0,(a_0≠0)有n个根x_1、x_2、……x_n的充要条件是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号