首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Despite its widespread use in performance assessment, the reliability of vertical jump in an ageing population has not been addressed properly. The aim of the present study was to assess intra- and inter-day reliability of countermovement jump in healthy middle-aged (55–65 years) and older (66–75 years) men and women. Eighty-two participants were recruited and asked to perform countermovement jumps on two different occasions interspersed by 4 weeks. The middle-aged groups exhibited excellent absolute reliability for flight height, jump height, peak force, peak power, peak force/body mass, and peak power/body mass, with coefficients of variation ranging from 2.9% to 7.2% in men and from 3.6% to 6.9% in women and moderate-to-high intraclass correlations (0.75 to 0.97 in men; 0.77 to 0.95 in women). The older groups displayed good coefficients of variation (4.2% to 10.8% in men and 3.4% to 9.5% in women), but the intraclass correlations were low-to-high (0.43 to 0.84 in men; 0.42 to 0.93 in women). Overall, intra-session reliability was higher than inter-session reliability. Peak power was by far the most consistent variable, whereas flight and jump height had the most marked variability. The minimum detectable change varied from 10.5% to 33%, depending on the variable examined, suggesting important implications for intervention studies.  相似文献   

2.
The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation and Bland–Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland–Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (= 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.  相似文献   

3.
4.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

5.
Muscular power is important for maintaining physical functioning with aging. Proper quantification of the reliability of muscular power tests is crucial to inform monitoring of individuals and sample size planning for interventional studies. This study evaluated short- and long-term reliability of leg extensor power measurement in 72 adults (age 62.7 ± 8.6 years). Participants completed four repeat trials on the Nottingham leg extensor power rig, with a further trial twelve weeks later. Mean change, typical error, and intraclass correlation coefficients (ICC) were calculated. For short-term reliability, mean change in power output was trivial after two trials (1.2–4.8%). Typical errors were small following four trials in the dominant leg of males (10.9–5.8%), three in the non-dominant leg of males (9.9–6.2%) and the dominant leg of females (10.0–9.6%) and two in the non-dominant leg in females (8.3%). Intraclass correlation coefficients (ICCs) were very high (0.88–0.96). For long-term reliability, mean change remained trivial (1.0–2.5%), typical errors remained small (5.8–8.6%), and ICCs very high (0.94–0.96). The leg extensor power rig is a reliable method for assessing lower body muscular power, both short- and long-term, with only minimal habituation effects.  相似文献   

6.
Abstract

We examined the effects of instructional and motivational self-talk on centre of mass displacement and hip kinematics during the vertical jump. Twenty-four male rugby union players (age 21.1 years, s = 3.5; body mass 81.0 kg, s = 8.9; height 1.80 m, s = 0.06) performed three vertical jump tests, with a 2 min rest between jumps. Before each jump, participants engaged in one of three counterbalanced interventions (motivational self-talk, instructional self-talk or no-intervention). Motivational self-talk led to greater centre of mass displacement (0.602 m, s = 0.076; P = 0.012) than the no-intervention control (0.583 m, s = 0.085). Centre of mass displacement did not differ between instructional self-talk and the control condition or between motivational and instructional self-talk. Motivational (100.75°, s = 16.05; P = 0.001) and instructional self-talk (106.14°, s = 17.04; P = 0.001) led to greater hip displacement than the no-intervention control (94.11°, s = 17.14). There was also a significant difference in hip displacement between motivational and instructional self-talk (P = 0.014), although there was no difference between instructional self-talk and the control condition. Motivational (451.69 °/s, s = 74.34; P = 0.008) and instructional self-talk (462.01 °/s, s = 74.37; P = 0.001) led to greater hip rotation velocity than the no-intervention control (434.37 °/s, s = 75.37), although there was no difference between the two self-talk interventions. These results indicate that self-talk may influence performance and technique during the vertical jump in male rugby players.  相似文献   

7.
We examined the effects of instructional and motivational self-talk on centre of mass displacement and hip kinematics during the vertical jump. Twenty-four male rugby union players (age 21.1 years, s = 3.5; body mass 81.0 kg, s = 8.9; height 1.80 m, s = 0.06) performed three vertical jump tests, with a 2 min rest between jumps. Before each jump, participants engaged in one of three counterbalanced interventions (motivational self-talk, instructional self-talk or no-intervention). Motivational self-talk led to greater centre of mass displacement (0.602 m, s = 0.076; P = 0.012) than the no-intervention control (0.583 m, s = 0.085). Centre of mass displacement did not differ between instructional self-talk and the control condition or between motivational and instructional self-talk. Motivational (100.75 degrees , s = 16.05; P = 0.001) and instructional self-talk (106.14 degrees , s = 17.04; P = 0.001) led to greater hip displacement than the no-intervention control (94.11 degrees , s = 17.14). There was also a significant difference in hip displacement between motivational and instructional self-talk (P = 0.014), although there was no difference between instructional self-talk and the control condition. Motivational (451.69 degrees /s, s = 74.34; P = 0.008) and instructional self-talk (462.01 degrees /s, s = 74.37; P = 0.001) led to greater hip rotation velocity than the no-intervention control (434.37 degrees /s, s = 75.37), although there was no difference between the two self-talk interventions. These results indicate that self-talk may influence performance and technique during the vertical jump in male rugby players.  相似文献   

8.
An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

9.
The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6 s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r = 0.97-0.99; P < 0.001), as were RPE and heart rate (r = 0.93-0.97; P < 0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.  相似文献   

10.
11.
12.
13.
Abstract

The aims of this study were to investigate the energy build-up and dissipation mechanisms associated with using an arm swing in submaximal and maximal vertical jumping and to establish the energy benefit of this arm swing. Twenty adult males were asked to perform a series of submaximal and maximal vertical jumps while using an arm swing. Force, motion and electromyographic data were recorded during each performance and used to compute a range of kinematic and kinetic variables, including ankle, knee, hip, shoulder and elbow joint powers and work done. It was found that the energy benefit of using an arm swing appears to be closely related to the maximum kinetic energy of the arms during their downswing, and increases as jump height increases. As jump height increases, energy in the arms is built up by a greater range of motion at the shoulder and greater effort of the shoulder and elbow muscles but, as jump height approaches maximum, these sources are supplemented by energy supplied by the trunk due to its earlier extension in the movement. The kinetic energy developed by the arms is used to increase their potential energy at take-off but also to store and return energy from the lower limbs and to “pull” on the rest of the body. These latter two mechanisms become more important as jump height increases with the pull being the more important of the two. We conclude that an arm swing contributes to jump performance in submaximal as well as maximal jumping but the energy generation and dissipation sources change as performance approaches maximum.  相似文献   

14.
The aims of this study were to investigate the energy build-up and dissipation mechanisms associated with using an arm swing in submaximal and maximal vertical jumping and to establish the energy benefit of this arm swing. Twenty adult males were asked to perform a series of submaximal and maximal vertical jumps while using an arm swing. Force, motion and electromyographic data were recorded during each performance and used to compute a range of kinematic and kinetic variables, including ankle, knee, hip, shoulder and elbow joint powers and work done. It was found that the energy benefit of using an arm swing appears to be closely related to the maximum kinetic energy of the arms during their downswing, and increases as jump height increases. As jump height increases, energy in the arms is built up by a greater range of motion at the shoulder and greater effort of the shoulder and elbow muscles but, as jump height approaches maximum, these sources are supplemented by energy supplied by the trunk due to its earlier extension in the movement. The kinetic energy developed by the arms is used to increase their potential energy at take-off but also to store and return energy from the lower limbs and to "pull" on the rest of the body. These latter two mechanisms become more important as jump height increases with the pull being the more important of the two. We conclude that an arm swing contributes to jump performance in submaximal as well as maximal jumping but the energy generation and dissipation sources change as performance approaches maximum.  相似文献   

15.
The purpose of this study was to determine the effects of training on the force-, velocity-, and displacement-time curves using principal component analysis (PCA) to examine the pre to post intervention changes. Thirty-four trained women basketball players were randomly divided into training and control groups. The training intervention consisted of full squats combined with repeated jumps. The effects of the intervention were analysed before and after the training period of 6 weeks by comparing the principal component scores. The magnitude of differences within-/between-group were calculated and expressed as standardised differences. After the intervention period, clear changes in principal components were observed in the training group compared to the control group. These were related to the execution of a vertical jump with a faster and deeper countermovement that was stopped with greater force. This resulted in greater force from the start of the upward movement phase which was maintained for a longer time. This increase in force throughout a greater range of motion increased the take-off velocity and consequently jumping height.  相似文献   

16.
强力适能瑜伽练习对健康中年女性血脂的影响   总被引:2,自引:0,他引:2  
目的:通过分析受试者进行4周和7周强力适能瑜伽练习前后血脂指标和体成分指标的变化,来探讨瑜伽练习对中年女性血脂和体成分的影响.方法:15位无规律运动的健康中年女性持续7周的强力适能瑜伽练习,于练习前、4周后和7周后测血脂和体成分,血脂包括甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C),体成分包括体脂肪量、体重、去脂体重(FFM)、体质指数(BMI).结果:瑜伽练习4周后各项指标均无显著性变化,瑜伽练习7周后TC、LDL-C、TG、TG/HDL-C与LDL-C/HDL-C有显著性下降的趋势(P<0.05),而HDL-C、体重、体脂肪量、FFM、BMI等仍无显著性变化.结论:无规律运动的健康中年女性经过7周强力适能瑜伽练习后血脂状况获得改善,而对身体成分则无明显变化.  相似文献   

17.
In order to assess lower extremity muscle mechanical properties in athletes, power-load characteristics during multi-joint tasks are frequently examined. This work compared 6 weeks of traditional (TP) and daily-undulated (DUP) periodized loaded countermovement jumping (CMJ). 20 amateur athletes (age: 24.2 ± 2.6 years, height: 175.6 ± 7.1 cm, body mass: 71.5 ± 7.7 kg, 10 males/10 females) exercised three times weekly using maximal CMJs with loads corresponding to 0%, 15% and 30% of body mass. Prior to the training period, subjects were once-only assigned by random to either the TP or DUP training scheme. Pre-to-post training, maximal center of mass (COM) -height, -take-off velocity, -power output and -impulse were compared during CMJ with additional loads corresponding to 0–30% of body mass. ANOVA (time * group) with repeated measures revealed significant (P < 0.05) temporal gains of maximal COM-height (2–11%), -take-off velocity (1–7%), -power (2–8%) and -impulse (3–9%) over most loading conditions for TP and DUP. However, ANOVA indicated no group effects for any outcome. Independent from the periodization model, maximal power output remained statistically unchanged with increased testing loads. For short-term conditioning periods, TP and DUP were equally effective in enhancing biomechanical jumping variables under varying loading conditions.  相似文献   

18.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad · s -1 and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5 - 7.1 years (mean - s ). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets 2 10 repetitions at 70% body mass load). Strength was reduced for 4 days ( P ? 0.05) but no significant differences ( P > 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6 - 1.1% vs 95.2 - 1.3% of pre-exercise values, P ? 0.05) and drop jump (95.2 - 1.4%, P ? 0.05) performance. Creatine kinase was elevated ( P ? 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

19.
The purpose of this study was to compare the maximal exercise performance during cycle ergometry of 34 men and 47 women. External peak power output (OPP) and optimized pedalling rate (ORPM) were calculated from data gathered during an optimization procedure performed on a friction braked cycle ergometer. In addition, lean leg volume (LLV) and lean upper leg volume (LULV) were determined using an anthropometric technique. Both OPP and ORPM were greater in men than in women (1007 +/- 135 vs 673 +/- 109 W and 119.5 +/- 7.0 vs 104.5 +/- 8.4 rev min-1, respectively; P less than 0.001). The LLV and LULV were also greater in men than in women (7.41 +/- 0.82 vs 5.19 +/- 0.85 l and 4.96 +/- 0.63 vs 3.35 +/- 0.62 l, respectively; P less than 0.001). The ratio standards OPP/LLV and OPP/LULV did not differ significantly between men and women (136.3 +/- 14.7 vs 131.0 +/- 20.6 W l-1 and 204.4 +/- 27.1 vs 204.4 +/- 37.0 W l-1, respectively; P greater than 0.05). Peak power output was related to each of the anthropometric indices in both men and women (LLV:r = 0.614 and 0.527, P less than 0.001; LULV:r = 0.489 and 0.396, P less than 0.01). Analysis of covariance revealed no significant differences between the groups in the variance about regression and the regression coefficients (P greater than 0.05), but the elevation of the regression lines did differ (P less than 0.001). The results suggest that there are differences between maximal exercise performance in men and women that are independent of estimated lean leg volume. They also demonstrate that, in this case, consideration of ratio standards is misleading and that a comparison of regression standards is more appropriate.  相似文献   

20.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号