首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在不等式的证明中,有一类不等式可以通过构造向量,利用两向量数量积的性质进行证明.两向量数量积中蕴含着几个重要的不等关系:m·n= |m| |n|cosθ≤|m| |n|(θ为m与n的夹角),|m·n|=|m| |n| |cosθ|≤|m| |n|, |m·n|2≤|m|2 |n|2.  相似文献   

2.
函数的最值问题 ,经常出现在中学各类试题中 ,巧妙利用向量求函数的最大值 ,最小值等 ,可以使一些函数的最值问题的思路清晰 ,解题方法简捷巧妙 ,并富于规律性 ,趣味性 .定理 A ,B为两个向量 ,则|A|2 ≥ (A·B) 2|B|2 .证明 设两向量的夹角为θ .则|A|2 =|A|2 ·|B|2|B|2≥ |A|2 |B|2 cos2 θ|B|2 =(A·B) 2|B|2 .1 巧用向量求未知数满足整式方程的代数式的最值例 1 已知 :实数x、y满足方程x2 y2-2x 4 y =0 .求x-2 y的最值 .( 1988年广东省高考题 )解 设A =(x-1,y 2 ) ,B =( 1,-2 ) .由x2 y2 -2x 4y=0 ,…  相似文献   

3.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

4.
设m=(x1,y,),n=(x2,y2),θ为向量m与n的夹角.平面向量数量积的定义:几何表示为m·n=|m||n|sinθ,坐标表示为m·n=x1x2 y1y2.于是有X1X2 y1y2=|m||n|  相似文献   

5.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

6.
文 [1 ],[2 ]各用一种方法介绍了形如函数 f( x) =ax2 + b- x( x≥ 0 ,a>1 ,b≥ 0 )(下称函数 )的最小值的求法 ,文 [3]用三种不同策略研究了比函数 更一般的函数f( x) =m x2 + 1 + nx(其中 mn<0 ,且 | nm|<1 ) (下称函数 )的值域 .本文再给出函数 的值域的一种新求法 .用待定系数法将 f( x)变形为f( x) =m+ n2 ( x2 + 1 + x) + m- n2( x2 + 1 - x) .( 1 )若 m>0 ,n<0 ,则由 | nm| <1得- m0 ,m- n2 >0 ,又   x2 + 1 + x>| x| + x≥ 0 ,x2 + 1 - x=1x2 + 1 + x>0 ,故由基本不等式得 f( x)≥ 2·m+ n2 ( x2 + …  相似文献   

7.
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:a·b=|a|·|b|cosθ(其中θ为向量a与b的夹角),则|a·b|=||a|·|b|cosθ|,又-1≤cosθ≤1,则易得到以下推论:(1)a·b≤|a|·|b|;(2)|a·b|≤|a|·|b|;(3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|;⑷当a与b共线时,|a·b|=|a|·|b|.下面例析以上推论在解不等式问题中的应用.一、证明不等式例1已知a、b∈R ,a b=1,求证:2a 1 2b 1≤22.证明:设m=(1,1),n=(2a 1,2b 1),则m·n=2a 1 2b 1,|m|=2,|n|=2a 1 2b 1=2.由性质m·n≤|m|·|n|,得2a 1 2b 1≤22.例2已知x y z=1,求…  相似文献   

8.
彭光焰 《中学理科》2007,(12):10-12
恰当地应用好向量和导数,许多最值问题便迎刃而解,并且利用向量和导数来求最值,容易被学生接受.为了便于比较.一、用|a||b|≥a.b求最值例1已知x,y,z∈R ,且x y z=1,求x1 4y z9的最小值.解:令a=(1x,2y,3z),b=(x,y,z),则|a|2=1x 4y 9z,|b|2=1,(a.b)2=(1 2 3)2=36.由|a|2|b|2≥(a.b)2得,1x 4y 9z≥36,当且仅当1x=2y=3z时等号成立,即x=16,y=31,z=21.∴1x 4y 9z的最小值为36.例2已知ai,bi∈R ,且∑ni=1ai=∑ni=1bi=1,求a1a 12b1 a2a 22b2 … ana 2nbn的最小值.解析:令p=(a1a1 b1,aa2 2b2,…,anan bn,q=(a1 b1,a2 b2,…,an bn),则|p|2=a1a 21b1 a…  相似文献   

9.
向量是高中教材的新增内容 ,是数形结合的典型体现 ,向量与解析几何同源同宗 .用向量知识去解决两直线共线 (平行 )、垂直及夹角等问题比传统解几方法有着很大的优越性 ,对多数师生来说 ,向量方法还是一个有待发掘的宝库 .这里略举数例 ,以期抛砖引玉 .例 1 已知动点 ( x,y)满足 ( x - 2 ) 2 + ( y - 1) 2 =2 5,求 3x + 4y的取值范围 .解 :设 a =( 3,4 ) ,b =( x - 2 ,y - 1) ,a与 b的夹角为θ,则 3x + 4y =a .b + 10 =| a| | b| cosθ+ 10 =2 5cosθ + 10 .∴ 3x + 4y的最大值为 35,最小值为 - 15,即 3x+ 4y∈ [- 15,35] .例 2  ( 1995年…  相似文献   

10.
<正>在一次九年级数学考试中,试卷有这样一道试题:若W=2x2-4xy+5y2+4x-2y+3,且x,y为实数,则W的最小值是__.不少同学是这样解答的:W=(x2-4xy+4y2)+(x2+4x+4)+(y2-2y+1)-2=(x-2y)2+(x+2)2+(y-1)2-2.∵(x-2y)2≥0,(x+2)2≥0,(y-1)2≥0,∴W的最小值是-2.这是一道二元函数最值问题,是典型的代数推理题.解答时,  相似文献   

11.
(?)是向量数量积的重要性质,若m=(a,b),n=(x,y),则坐标形式是|ax+by|≤ (?),若(?),则坐标形式是|ax+by+cz|≤(?) 用坐标形式可以在代数与三角的等式与不等式(最值)问题的解决中体会别有一番韵味.  相似文献   

12.
错在哪里     
<正>问题若a≥0,b≥0,且当x≥0,y≥0,x+y≤{1时,恒有ax+by≤1,问以a,b为坐标的点P(a,b)所形成的平面区域的面积为多少?错解设向量m=(a,b),n=(x,y),m与n的夹角为θ.由a≥0,b≥0,且x≥0,y≥0,得θ∈0,[π/2].不等式ax+by≤1恒成立等  相似文献   

13.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

14.
例说向量的广泛应用   总被引:1,自引:0,他引:1  
高考命题中对知识综合性的考查 ,往往在知识网络交汇点上设计试题 ,而向量则是三角函数、解析几何等多学科知识的交汇点 ,因此也是新高考的命题热点 .例 1 已知 (x-1) 2 + (y-2 ) 2 =2 5 ,求3x+ 4y的最值 .解 设a =(3 ,4) ,b =(x-1,y -2 ) ,a与b的夹角为θ,则3x + 4y =a·b + 11=|a||b|cosθ+ 11=2 5cosθ + 11.∴ 3x+ 4y的最大值为 3 6,最小值为-14 .例 2 已知x2 + y2 =4,a2 +b2 =6,求ax +by的最值 .解 设a=(x ,y) ,b=(a ,b) ,a与b的夹角为θ ,则ax +by =a·b=|a||b|cosθ…  相似文献   

15.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

16.
二次根式求值问题是二次根式学习中常见的一种问题.解答它们,仅仅考虑常规的先化简后代入的方法有时很难奏效,必须巧用一些其他的方法. 一、巧用二次根式的定义 例1 已知x、y为实数,且满足√1+x-(y-1)√1-y=0,则x2011-y2011=______. 分析:由二次根式的定义,得√1 +x ≥0、√1-y≥0,那么y-1≥0.又1-y≥0,则y的值可以求出.随之,x的值也可以求出. 解:已知等式为√1+x=(y-1)√1-y. ∵√1+x≥0,√1-y≥0, ∴√y-1≥0,1-y≤0. 又∵1-y≥0, ∴1-y=0,y=1. 把y=1代入已知等式,得√1+x=0,x=-1. 则求式=(-1)2011-1=-2.  相似文献   

17.
1待定系数法例1若f(x)=x2-mx+n,f(n)=m,f(1)=2,求f(x).解依题意:2,12,n mn n mm n-----++==解得m=-2,n=-1,∴()f x=x2+2x-1.注如果已知函数式的构造模式,通常根据题设用此法求出函数式的待定系数.2换元法例2已知f(x+1)=x+1,求f(x).解令x+1=t,则x=(t-1)2(t≥1),∵f(t)=(t-1)2+1(t≥1),即f(x)=t2-2t+2(x≥1).注如果已知复合函数f(g(x))的表达式,求f(x)的解析式;先令g(x)=t,得f(x),但值得注意的是在进行变量替换时,应求出新变量的取值范围,否则容易出现错误.3代入法例3设()1f x=1-x,求f(f(f(x)))的解析式.解∵(())11f f x=1-f(x)=1-1/(1-x)1x x…  相似文献   

18.
<正>一、试题呈现(2015年浙江高考题)若实数x,y满足x~2+y~2≤1,则|2x+y-2|+|6-x-3y|的最小值为_.二、试题解析这是2015年浙江省高考数学理科卷的第14题,问题要求的是在约束条件(实数x,y满足x~2+y~2≤1)下,以x,y为变量的二元函数(|2x+y-2|+|6-x-3y|)的最小值.问题  相似文献   

19.
1987年上海市中学生数学竞赛中有这样一道试题:[1] 正七边形A_1A_2A_3A_4A_5A_6A_7,内接于单位圆⊙O中,P在OA_1的延长线上,且|OP|=2,则|PA_1|·|PA_2|…|PA_7|等于多少? 下面我们把这道富于思考性的试题推广成: 定理设正n边形A_1A_2A_3…A_n内接于圆x~2+y~2=R~2,P(rcosθ,rsinθ)为平面上任意一点,则|PA_2|·|PA_2|·…·|PA_n|=(r~(2n)-2r~nR~ncosnθ+R~(2n))~(1/2)。  相似文献   

20.
1.已知非空集合A={x|x2-4mx 2m 6=0,x!R},若A∩R-≠!,求实数m的取值范围.(R-表示负实数)2.关于x的方程x3-3x2-a=0有3个不同的实数解,求实数a的取值范围.3.已知a!R,求函数y=(a-sinx)(a-cosx)的最小值.4.当n!N且n≥3时,求证:n 13 n 14 … 2n1 2>1130.5.已知定点(M-1,2),直线l1:y=(a x 1),曲线C:y=$x2 1,l1与C交于A,B两点.记线段AB的中点为N,直线l2经过M,N两点,且在x轴上的截距为m,将m表示成a的函数,并求此函数的定义域.6.已知向量u=(x,y)和向量v=(y,2y-x)的对应关系可用v=f(u)表示.(1)已知a=(1,1),b=(1,0),求f(a),f(b)的坐标.(2)求…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号