首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
巧算平均数     
【例1】 已知a>0,b>0且a+b=1,求证a+12+b+12≤2.证明:设x=a+12,y=b+12且x+y=k则射线x+y-k=0与圆弧x2+y2=2有交点,所以|-k|2≤2即|k|≤2.∴a+12+b+12≤2【例2】 已知实数x,y满足(x-3)2+(y-3)2=92,则yx的最大值是    .解:令yx=k,则直线kx-y=0与圆(x-3)2+(y-3)2=92有交点.所以|3k-3|k2+1≤32.整理,得k2-4k+1≤0.解之,得2-3≤k≤2+3.故yx的最大值是2+3.【例3】 求函数y=2-sinx2-cosx的值域.解:令u=cosx,v=sinx,则直线yu-v-2y+2=0与圆u2+v2=1有交点.∴|-2y+2|y2+1≤1整理,得3y2-8y+3≤0.解之,得4-73≤y≤4+73故所求函数的值域为[4-73,4+73…  相似文献   

2.
一、求函数的最值及值域 例 1.求函数 y=的最大值与最小值 . 解:令 u=, v=则有 u2+ v2=20,y=2u+ v,在同一坐标系内画出四分之一个圆: u2+ v2=20和直线系: v=- 2u+ y的图象 .如图 1,直线与圆相切时,有 ymax=OA.直线过点 B(0, 2 )时,有, ymin=OB.∴ ymax=10.ymin=2 . 例 2.求函数 y=2x- 2 的值域 . 解:把给定函数变形为- 2x+ y=- 2 ,令 y=t,得- 2x+ t=- 2. .在同一坐标系中分别作出直线系 y=- 2x+ t及半双曲线 y=- 2的图象 .如图 2直线系 y=- 2x+ t与下半双曲线 y=- 有交点时, t≤- 4或 0 二、比较大小 例 3…  相似文献   

3.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

4.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

5.
一、直线与圆锥曲线位置关系问题这种问题实际上是讨论直线方程和圆锥曲线方程组成的方程组是否有实解的问题.通过消元最终归结为讨论一元二次方程ax2+bx+c=0的解的个数问题.要注意a≠0与a=0两种情形,同时要特别重视判别式的作用.例1直线y=kx-1与抛物线(y+1)2=4(x-2)只有一个公共点,则k的值为.解(1)若k=0,y=-1,显然直线与(y+1)2=4(x-2)只有一个公共点.(2)若k≠0,由y=kx-1,(y+1)2=4(x-2),得k2x2-4x+8=0.∴驻=16-4k2×8=0,即k=±姨22.故k的值可能为0,-姨22,姨22.二、弦长问题若直线l与圆锥曲线的交点为A(x1,y1),B(x2,y2),由AB=(x2-x1)2+(y2-…  相似文献   

6.
1求两圆交点的直线方程求通过两圆x2 y2-2x-3=0与x2 y2-4x 2y 3=0的交点的直线方程.学生中有3种解  相似文献   

7.
正"圆"是苏教版必修二中重要的一块内容,是几何与代数的交汇点,也是高考的热点之一.以下主要研究其常见的几类问题.一、求圆的标准方程例1已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为.(2010天津文数)解析:本题主要考查圆的方程的求法,属于容易题.令y=0得x=-1,所以直线x-y+1=0,与x轴的交点为(-1,0).因为直线与圆相切,所以圆心到直线的距离等于半径,即r=-1+0+3姨2=姨2,所以圆C的方程为(x+1)2+y2=2.  相似文献   

8.
直线与圆的位置关系是中学解析几何中一个基本而重要的知识点.利用其方程的形式特点及数形结合的功能解题,常有令人惊喜的效果. 例1如果实数x、y满足(x-2)2 +y2=3,那么y/x的最大值为( ). A.1/2 B.(3~(1/2))/3 C.(2~(1/2))/2 D.3~(1/2) 解:设y/x=k,则得直线l:kx-y=0. 所以,圆心(2,0)到直线l的距离d-|2k-0|/((k~2+1)~(1/2))≤3~(1/2).  相似文献   

9.
一、反解时忽视了原函数的定义域例1求y=x2+4x+2(0≤x≤2)的反函数. 错解:因为y=-x1+4x+2=-(x-2)2+6(0≤x≤2),y∈[2,6],所以x=2±(6-y)~(1/2).则反函数为y=2±(6-x)~(1/2)(2≤x≤6). 上述解法在解x时,没有根据原函数的定义域对x进行合理取舍,应将x=2+(6-x)~(1/2)舍去.正确的反函数为y=2-(6-x)~(1/2)(2≤x≤6).  相似文献   

10.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

11.
本文给出用极值求两图形间的距离的方法。一、求点到直线的离距。 1.在平面上,求点A(x_1,y_1)到直线l:y=kx+b的距离d。解:在直线l上任取一点p(x,y),则 |AP|=((x-x_1)~2+(y-y_1)~2)~(1/2) =((x-x_1)~2+(kx+b-y_1)~2)~(1/2) =((1+k~2)x~2-2(x_1+ky_1-kb)x+x_1~2+(y_1-b)~2)~(1/2) =((1+k~2)(x-(x_1+ky_1-kb)/(1+k~2))~2+(kx_1-y_1+b)~2/(1+k~2))~(1/2)当x=(x_1+ky_1-kb)/(1+k~2)时,|AP|取极小值d。所以d=|AP|极小=|kx_1-y_1+b|/(1+k~2)~(1/2)=0给出,则k=-A/B,b=-C/B,于是 d=|-(A/B)x_1-y_1-C/B|/(1+(A~2/B~2))~(1/2) =|Ax_1+By_1+C|/(A~2+B~2)~(1/2)  相似文献   

12.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

13.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

14.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

15.
刘长柏 《高中生》2009,(16):6-7
1.直线4x+3y=40与圆x2+y2=100的位置关系是A.相交B.相切C.相离D.无法确定2.经过点M(2,1)作圆x2+y2=5的切线,则切线方程是A.姨2x+y-5=0B.姨2x+y+5=0C.2x+y-5=0D.2x+y+5=03.直线y=x-1上的点到圆x2+y2+4x-2y+4=0的最短距离为  相似文献   

16.
例1求过点P(5,4)且与圆x2+y2=25相切的直线l的方程.错解设所求过点P(5,4)的直线l的斜率为k,则其方程为y-4=k(x-5),即kx-y-5k+4=0.圆x2+y2=25的圆心O(0,0),半径r=5,由条件|-5k+4|!#k2+1=5,解得k=-490,则直线l的方程为9x+40y-115=0.剖析错解忽视了斜率不存在的情况.应对直线斜率的存在性进行分类讨论,还要补上当斜率不存在,即直线l垂直于x轴时直线l的方程x=5,再证明直线l=5与圆x2+y2=25相切.综合得直线l的方程为x=5或9x+40y-115=0.注意解与直线斜率有关的问题时,要分斜率存在与不存在两类.例2若点P(m,n)到A(-2,4)、B(6,8)的距离之和最小,…  相似文献   

17.
在直线和圆的教学过程中遇到这样一个问题 :已知圆C1:x2 + y2 - 2x + 10 y- 2 4 =0 ,圆C2 :x2 +y2 + 2x + 2 y- 8=0 ,求经过两圆交点A、B的直线l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 - 2x + 10 y- 2 4 =0 ,(1)x2 + y2 + 2x + 2 y- 8=0 . (2 )(1) - (2 ) ,得- 4x+ 8y - 16 =0 ,即x- 2 y + 4=0 ,变形得 x=2 y- 4. (3)将 (3)代入 (2 )化简整理 ,得y2 - 2 y =0 ,解得 y1=0 ,y2 =2 .将 y1=0 ,y2 =2…  相似文献   

18.
一利用已知对称关系及其结论化繁为简例1 已知两曲线 y=kx 1和 x~2 y~2 kx-y-4=0的两个交点关于直线 y=x 对称,求两交点坐标.解:因两曲线的两交点关于直线 y=x 对称,则直线y=kx 1和直线 y=x 垂直.故 k=-1.解方程组(?)得两曲线交点为(2,-1)和(-1,2).  相似文献   

19.
一、三点共线研究交点坐标例1已知A(4,0)、B(4,4)、C(2,6),试求直线AC与直线OB(O为坐标原点)的交点P的坐标.解:设P(x,y),则OP=(x,y),AP=(x-4,y).因P是AC与OB的交点,所以P在直线AC上,也在直线OB上,即OP∥OB,AP∥AC.又AC=(-2,6),OB=(4,4),所以6(x-4) 2y=0,4x-4y=0,解得x=3,y=3,知  相似文献   

20.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号