首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以超细钢铁渣粉(以下简称“超细钢渣”) 为主要掺合料制备胶凝材料,通过XRF、粒径分析、XRD分析和力学性能测试,探究超细钢渣对水泥基材料的力学性能影响。结果表明:通过机械研磨制备出的超细钢渣,其矿相成分硅酸三钙、硅酸二钙和莫来石特征峰强度最强,复掺的超细钢渣活性指数也满足国家标准。随着超细钢渣掺量增加,3 d 抗压和抗折强度均出现逐渐降低的趋势,但在外掺m (超细钢渣) ∶ m (超细矿渣)= 2:3、w复合粉=30%时,其28 d 抗压和抗折强度达到峰值,分别为8.9、53.8 MPa。超细钢渣在不同龄期水化反应程度不同,早期水化反应较低,强度较差;后期水化程度较高,且优于同标准水泥。  相似文献   

2.
研究了钢纤维掺量和强度等级对超高性能纤维增强水泥基复合材料(UHPFRCC) 宏观性能的影响及UHPFRCC 在荷载与环境因素耦合作用下的耐久性能. 制备了 3 组不同强度等级(100,150,200 MPa) 和不同纤维掺量 (0%,1%,2%,3%) 的高与超高性能水泥基复合材料,并且测试了其各项力学性能和短期耐久性能. 利用设计的预加载装置,在 UHPFRCC150 试件上施加了应力比为 0. 5 的四点弯曲荷载. 结果表明,随着强度等级的增加,在掺加适量钢纤维掺量的情况下,高与超高性能水泥基复合材料的强度和韧性均明显提高,同时其干燥收缩值降低. 对于加载的试件,钢纤维降低了拉应力对 UHPFRCC 抗氯离子渗透性能的不利影响,并且提高了材料的抗冻融性能.  相似文献   

3.
为了研究尾矿粉掺加水泥稳定铁矿废石混合料施工最佳配合比的影响,对不同掺量尾矿粉(0%、5%、10%、15%、20%)及不同种类和剂量外加剂的水泥稳定铁矿废石混合料进行无侧限抗压强度、水稳性、抗冻性、疲劳性能试验,试验结果表明,随着尾矿粉掺量增加水泥稳定铁矿废石混合料无侧限抗压强度、水稳定系数、抗冻系数呈现先增加后降低变化趋势,当尾矿粉掺量达到14.5%时,混合料无侧限抗压强度、水稳定系数、抗冻系数达到峰值;当尾矿粉掺量为6.3%时,混合料疲劳性能达到最佳;尾矿粉掺入水泥稳定铁矿废石混合料剂量为15%时,可以广泛应用于道路基层中。  相似文献   

4.
研究了聚丙烯纤维和微膨胀复合对大掺量粉煤灰砂浆变形性能的影响,聚丙烯纤维及聚丙烯纤维与微膨胀复合对水泥基复合材料抗硫酸盐侵蚀性能的影响。研究结果显示,聚丙烯纤维和微膨胀复合能有效改善大掺量粉煤灰砂浆的变形性能,聚丙烯纤维和膨胀剂的复合最有利于控制砂浆试块原生裂缝和尺寸,使砂浆试块的密实度及砂浆的抗硫酸盐腐蚀能力提高。  相似文献   

5.
为了研究精细钢纤维与聚乙烯醇(polyvinyl alcohol, PVA)纤维掺量对纤维水泥基复合材料抗拉力学性能的影响,进行了4组12个精细钢纤维/PVA纤维混杂水泥基材料试件的单轴抗拉试验,测得其应力-应变曲线及相关抗拉力学性能指标。试验和分析结果表明,含0.8%精细钢纤维试件的初裂强度为3.70 MPa,峰值强度为4.16 MPa,分别略低于最大值4.44 MPa与4.86 MPa,但峰值应变为最大值0.858%,材料韧性优于其他试件。过多的精细钢纤维不利于纤维发挥其增韧作用。基于试验数据建立了适用于混掺精细钢纤维/PVA纤维水泥基材料的单轴拉伸应力应变本构模型,模型拟合结果与试验曲线吻合良好。  相似文献   

6.
以硅酸盐和硫铝酸盐复合水泥为基材制作水泥基注浆材料,分别讨论了不同类型、不同掺量的粉煤灰和矿粉对水泥基注浆材料的流动度、容重、膨胀率、抗压抗折强度的影响。结果表明:粉煤灰能有效地增加水泥基注浆料的流动度,当粉煤灰掺量低于20%时,可以提高注浆料的塑性膨胀率,当Ⅰ级粉煤灰掺量为20%或Ⅱ级粉煤灰掺量为15%时,3 h膨胀率最高达1%;粉煤灰对注浆料的早期强度不利,但可以增强其后期强度。矿粉可以改善其流动度,随着矿粉的增加,注浆料的容重和膨胀率均呈下降趋势;矿粉对注浆料的28 d强度无显著影响,其早期强度随着矿粉的增加而下降,当S75矿粉掺量高于7%或S95矿粉掺量高于11%时,抗压抗折强度不满足规范要求。  相似文献   

7.
通过实验室试验,对掺SBR胶乳及聚丙烯纤维水泥稳定碎石强度进行了研究,比较了SBR胶乳及聚丙烯纤维对水泥稳定碎石性能的改善效果。结果表明:SBR胶乳和聚丙烯纤维都能有效提高水泥稳定碎石的抗拉强度与抗折强度,能够很好的改善水泥稳定碎石基层材料的抗裂性能,其中聚丙烯的改善效果更好。  相似文献   

8.
采用测定砂浆收缩试验及渗水高度法,研究了单掺及双掺粉煤灰和石灰粉对砂浆收缩及混凝土抗渗透性能的影响.结果表明:当单独掺入粉煤灰20%,石灰石粉40%,对抑制砂浆收缩有明显效果;当单独掺入粉煤灰10%,石灰石粉20%时混凝土抗水渗透能力效果明显.双掺粉煤灰10%石灰石粉20%及双掺粉煤灰20%石灰石粉20%时,对抑制砂浆收缩及提高混凝土抗渗性能均有明显效果,有助于提高混凝土的耐久性.  相似文献   

9.
以原状磷石膏、水泥、偏高岭土等为主要原料,磷酸或乙酸为激发剂,制备了酸激发磷石膏胶凝材料并探究其基本物理力学性能,研究了酸激发剂的种类及掺量对胶凝材料抗压性能和抗折性能的影响。研究结果表明:磷石膏、偏高岭土、水泥的质量比为45∶15∶40,掺加量为1-5%的磷酸或乙酸,制备的胶凝材料具有较好的抗压抗折性能;掺加量为4%的磷酸制备的胶凝材料28天龄期的抗压强度达到了30.97MPa,抗折强度3.64 MPa;掺加量为4%的乙酸制备的胶凝材料28天龄期的抗压强度19.03MPa,抗折强度达到了4.08 MPa;在自然养护条件下,磷酸激发的磷石膏胶凝材料的激发效果优于乙酸。  相似文献   

10.
为研究乳化沥青厂拌冷再生在高速公路路面下面层中的应用,通过对旧路面回收材料的性能评价和再生混合料矿料组成设计,研究再生混合料中用水量、乳化沥青含量和水泥掺量对乳化沥青厂拌冷再生的混合料性能影响。结果表明,乳化沥青冷再生混合料配合比中随着用水量的增加最大干密度先增大后减小;随着乳化沥青含量的增加,乳化沥青再生混合料的干、湿劈裂强度先增大后减小;当水泥掺量控制在1.5%时,乳化沥青厂拌冷再生混合料具有最佳的抗裂性能。  相似文献   

11.
梁磊  李贤达  王威 《中国科技论文》2023,(12):1321-1325+1333
为改善冷再生沥青混合料(cold recycled asphalt mixture, CRAM)的耐久性能,提出将废机油改性乳化沥青应用于CRAM。在探究废机油改性乳化沥青冷再生混合料(waste engine oil modified cold recycled emulsified asphalt mixture, WEO-CRAM)力学性能和路用性能的基础上,采用间接拉伸疲劳试验研究了WEO-CRAM的疲劳寿命,并应用Weibull分布对疲劳试验结果进行分析,建立了疲劳方程。结果表明:CRAM冷再生沥青混合料的劈裂强度随废机油掺量的增加逐渐增加,不同再生沥青路面(recycled asphalt pavement, RAP)掺量的混合料均对应一个最佳废机油再生剂掺量。与普通CRAM相比,WEO-CRAM的抗裂性能至少提高了13%,且废机油对混合料的高温性能和水稳定性影响不大。基于Weibull分布建立的疲劳方程可以有效地评估WEO-CRAM的疲劳寿命。在不同应力比下,WEO-CRAM具有良好的抗应力变化敏感性和抗疲劳破坏能力,在应力比为0.45时的疲劳寿命较CRAM提高了35%。  相似文献   

12.
商品混凝土具有水灰比、水泥用量以及坍落度大等特性,本文根据商品混凝土的这些特性,采用板式混凝土的早期抗裂实验,对商品混凝土在粉煤灰的不同掺量下的早期的抗裂性能进行了研究,希望能给予相关人士一些意见和建议.  相似文献   

13.
研究了不同掺量聚丙烯纤维对混凝土性能的影响.实验结果表明,掺入0.05%~0.20%的聚丙烯纤维,可显著改善混凝土的抗裂性能、抗渗性能以及抗冲击性能,但将降低混凝土的强度.  相似文献   

14.
矿物掺合料如粉煤灰、矿渣等,能显著改善结构混凝土的耐久性,而得到普遍应用。从微观角度出发,采用压汞法(MIP)和X-CT断层扫描技术分析粉煤灰分别为10%、30%和50%对水泥基材料微结构的影响,进一步从氯离子传输角度分析掺合料对微结构改变的本质。压汞法的结果表明,粉煤灰掺量从10%到50%,水泥基材料的毛细孔和凝胶孔的体积率分别减少和增加,但总孔隙率在50%时出现增加;X-CT三维重构的结果显示,水泥基材料的微缺陷随着掺合料的增加而减少;氯离子传输的实验显示,含50%掺合料的试样,具有较大的传输系数,表明不适量的掺合料会降低水泥基材料的抗渗透性能。  相似文献   

15.
以氢氧化钠与磷石膏复合物激发粉煤灰和矿渣的超细粉体作为胶凝材料替代部分水泥制备水泥基灌浆料,研究了灌浆料的流动性能和力学性能随水灰比的变化规律,并且从微观结构上对地聚物超细粉的作用机制进行了分析与探讨.研究结果表明,当NaOH掺量为1.5%,磷石膏掺量为1.25%,水灰比为0.25时,灌浆料的流动度达到最佳值(0 min, 350 mm),且具有最大的抗压强度(1d, 36.4 MPa; 3d, 69.6MPa)和抗折强度值(1d, 12.5 MPa; 3d, 15.6MPa).  相似文献   

16.
为推广白水泥在清水混凝土中的应用,通过室内试验的方法,针对掺入不同含量白水泥的清水混凝土在不同养护龄时开展了外观表现、工作性能、抗裂性能、抗拉强度、抗压强度和耐久性试验研究,探讨了w白水泥和养护龄期对清水混凝土外观表现、力学性能和耐久性的影响。结果表明:白水泥掺入量影响清水混凝土的外观,白水泥掺量越大颜色越浅;随着w白水泥的增加,清水混凝土早期工作性能略有改善,抗裂性能随之减弱,早期抗压强度、抗拉强度随之增大,电通量先增加后降低;随着养护龄期增加,养护28、56 d后,w白水泥对抗压强度影响较小,抗拉强度随w白水泥增加而减小;w白水泥为50%时,养护后期的清水混凝土既具有良好外观,又具有较好的力学性能和耐久性。  相似文献   

17.
利用旋转压实仪成型试件,采用改进的Superpave设计方法进行Superflex改性沥青抗裂层混合料设计,通过浸水马歇尔试验、冻融劈裂试验、低温弯曲小梁试验、车辙试验及疲劳试验研究分析了掺加纤维前后Superflex改性沥青抗裂层混合料路用性能.试验结果表明:改进的superpave设计方法适合抗裂层沥青混合料设计;Superflex改性沥青抗裂层混合料具有良好的低温抗裂性能、水稳定性能及疲劳性能;掺加纤维可改善混合料高温性能、疲劳寿命和常温弯曲性能,疲劳寿命与应力呈指数关系,相关性较好,掺加纤维的Superflex改性沥青抗裂层适用南方湿热地区.  相似文献   

18.
目的:水泥基材料的拉伸性能会随着荷载速率的变化而变化。本文旨在探讨加载速率为4×10~(-6)~1×10~(-1) s~(-1)时,超高韧性水泥基复合材料直接拉伸初裂抗拉强度、初裂抗拉应变、弹性模量、极限抗拉应变、极限抗拉强度、多缝开裂特性和耗能能力的变化规律,为超高韧性水泥基复合材料在抗震工程中的应用提供必要的科学依据和参考。创新点:1.通过直接拉伸试验较为全面地测定超高韧性水泥基复合材料在4×10~(-6)~1×10~(-1) s~(-1)应变速率范围内的直接拉伸性能;2.建立适宜的拟合方程,可直观反映多种直接拉伸性能指标随应变率的变化规律。方法:1.通过直接拉伸试验,确定加载速率对超高韧性直接拉伸特性的影响(图2和4);2.通过对实验结果的拟合,简单直观地反映应变率对拉伸弹性模量、初裂抗拉强度和极限抗拉强度的影响规律(图3、5和7)。结论:基于超高韧性水泥基复合材料薄板直接拉伸试验,当应变速率在4×10~(-6)~1×10~(-1) s~(-1)的范围内变化时:1.材料的初裂抗拉强度、初裂抗拉应变、拉伸弹性模量、极限抗拉强度和耗能能力都具有应变速率敏感性,其中除初裂抗拉应变随应变率升高而减小外,其它几项性能指标都显示出明显的动态强化效应;2.多缝开裂模式和极限抗拉应变对应变率不敏感,极限裂缝宽度始终在100μm以内,极限抗拉应变保持在3.7%左右;3.应变率对初裂抗拉强度、拉伸弹性模量、极限抗拉强度和耗能能力的动态增强效应都存在一个阈值(皆在1×10~(-3) s~(-1)附近),在应变率达到阈值之后,动态效应才更加显著;4.超高韧性水泥基复合材料具有明显优于混凝土的耗能能力,在地震荷载(对应应变率在1×10-4~1×10-2 s~(-1))作用下其耗能能力可达C20混凝土的1000倍。  相似文献   

19.
针对钢渣体积稳定性差、钢渣-沥青混合料道路过早开裂的问题,采用二氧化硅胶体溶液对钢渣进行浸泡改性处理,通过力学性能测试、扫描电子显微镜(scanning electron microscope,SEM)检测、路用性能测试等方法研究了改性钢渣的物理力学性能、改性钢渣-沥青混合料的性能和钢渣的改性机理,并引入灰靶理论决策方法,综合改性钢渣-沥青混合料的各项性能指标,确定钢渣的最佳改性方案。结果表明:钢渣改性后,物理力学性能明显提高;钢渣的改性浓度越大,沥青混合料的高温性能越佳;延长钢渣的改性时间,沥青混合料的低温抗裂性能提高;且钢渣改性之后,沥青混合料的水稳定性能显著提高。基于灰靶决策理论,最终确定钢渣的最佳改性方案是在改性浓度(溶液质量分数)为3%的溶液下浸泡24 h。  相似文献   

20.
为开发高性能沥青路面热反射涂层,研究了功能填料配比对隔热性能的影响、粘结材料配比对粘结强度的影响以及功能填料掺量对隔热性能和粘结强度的影响,并在此基础上制备热反射涂层,对其耐久性能进行评价。结果表明:不同TiO2和SiO2质量比例下,随着TiO2质量的增加,热反射涂层的隔热性能升高。相同固化剂掺量下,在增韧剂掺量为20%~30%时,粘结强度最大;相同增韧剂掺量下,当固化剂掺量为30%~40%时,粘结强度最大。随着功能填料掺量的增加,热反射涂层隔热性能升高,粘结强度先缓慢降低,后加速降低。根据各组分最佳配比制备热反射涂层,涂层磨耗率随磨耗次数的增加而升高,前期升高速率快;隔热性能随磨耗率的增大而线性减小;抗滑性能随磨耗次数的增加先迅速上升后缓慢下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号