首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This project explores conceptual continuity as a framework for understanding students’ native ways of understanding and describing. Conceptual continuity suggests that the relationship between the use of words in one genre and the scientific genre can exist at varying levels of association. This perspective can reveal the varied relationships between ideas explained in everyday or vernacular genres and their association to scientific explanations. We conducted a 2-year study involving 15 high school baseball players’ understanding of the physics involved in baseball. First, we conducted a quantitative assessment of their science understanding by administering a test prior to season one (2006) and season two (2007). Second, we examined the types of linguistic resources students used to explain their understanding. Third, we revisited our data by using conceptual continuity to identify similarities between students’ conceptual understanding in the informal contexts and their similarities to canonical scientific ideas. The results indicated students’ performance on the multiple-choice questions suggested no significant improvement. The qualitative analyses revealed that students were able to accurately explain different components of the idea by using a diversity of scientific and non-scientific genres. These results call attention to the need to reconstruct our vision of science learning to include a more language sensitive approach to teaching and learning.  相似文献   

2.
We review Brown and Kloser’s article, “Conceptual continuity and the science of baseball: using informal science literacy to promote students science learning” from a Vygotskian cultural-historical and dialectic perspective. Brown and Kloser interpret interview data with student baseball players and claim that students’ conceptual understanding articulated in vernacular genres involves continuities (similarities) with the canonical scientific explanations. In this commentary, we suggest that the authors’ approach presupposes the dichotomy of the formal and the informal, which brings the authors’ attention to continuity into the separation of cognition from language. We propose a Vygotskian approach that points out the problem of theorizing cognition (conceptual understanding) by depending on specific forms of representation (e.g., scientific terms). As alternative, we envision a Vygotskian cultural-historical approach to language, which considers different, irreducible modes of communication as an integrated whole and therefore allows theorizing cognition without dichotomizing it from the concrete ways by which human being communicates. We provide an exemplary analysis of a lecture talk in a university physics classroom and exemplify dialectic theories that explain the development of conceptual understanding. We discuss that this Vygotskian dialectic approach shows that people communicate scientific concepts through hybridization, which does not reproduce a genre self-identically; the continuity of conceptual understanding involves dis/continuity.  相似文献   

3.
Much has been written about how effective nature of science instruction must have a significant explicit and reflective character. However, while explicitly drawing students’ attention to NOS issues is crucial, learning and teaching the NOS are essentially matters of conceptual change. In this article, how people learn and learners’ responses to the demands of conceptual change are used to explain how students may exit from instruction with fundamental NOS misconceptions left intact or only slightly altered, despite being explicitly and reflectively attended to more accurate ideas. The purpose of this concept paper is to set within a theoretical framework of learning, and bring some coherence to, what has rapidly become a large body of empirical research regarding effective NOS instruction. Toward these two ends, this article: (1) illustrates how a conceptual change framework can be used to account for learners’ responses to NOS instruction and what teachers might do to promote understanding NOS and transferring it to new contexts; (2) characterizes popularly advocated NOS instructional approaches along a continuum marked by increasing connection to the workings of science, and decreased ability to dismiss NOS lessons as extraneous to authentic science; and (3) proposes that NOS instruction would likely be more effective if teachers deliberately scaffolded classroom experiences and students’ developing NOS understanding back and forth along the continuum.  相似文献   

4.
The objective of this study was to construct a teaching strategy for facilitating students’ conceptual understanding of the boiling concept. The study is based on 52 freshman students in the primary science education department. Students’ ideas were elicited by a test consisting of nine questions. Conceptual change strategy was designed based on students’ alternative conceptions. Conceptual change in students’ understanding of boiling was evaluated by administering a pre-, post- and delayed post-test. The test scores were analysed both by qualitative and quantitative methods. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences in the tests and total scores (p < 0.05). Quantitative analysis of students’ responses on each test revealed different schema about changing their knowledge system. Both qualitative and quantitative analyses suggest that the teaching activities facilitated students’ conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching strategy enabled students to retain their new conceptions in the long-term memory.  相似文献   

5.
Models are often used when teaching science. In this paper historical models and students’ ideas about genetics are compared. The historical development of the scientific idea of the gene and its function is described and categorized into five historical models of gene function. Differences and similarities between these historical models are made explicit. Internal and external consistency problems between the models are identified and discussed. From the consistency analysis seven epistemological features are identified. The features vary in such ways between the historical models that it is claimed that learning difficulties might be the consequence if these features are not explicitly addressed when teaching genetics. Students’ understanding of genetics, as described in science education literature, is then examined. The comparison shows extensive parallelism between students’ alternative understanding of genetics and the epistemological features, i.e., the claim is strengthened. It is also argued that, when teaching gene function, the outlined historical models could be useful in a combined nature of science and history of science approach. Our findings also raise the question what to teach in relation to preferred learning outcomes in genetics.  相似文献   

6.
Components of Conceptual Ecologies   总被引:1,自引:0,他引:1  
The theory of conceptual change is criticized because it focuses only on supposed underlying logical structures and rational process processes, and lacks attention to affective aspects as well as motivational constructs in students’ learning science. This is a vast underestimation of the complexity and diversity of one’s change of conceptions. The notion of conceptual ecology provides a context for understanding individuals’ conceptual change learning, as it is the environment through which all information is interpreted. This research investigated how high school students’ statements, made in answering questions, reflect selected components of their conceptual ecologies. Data for this study was collected from six interviews in which seven students took part. The data also include the science teacher’s profiles of each student, the students’ personal journals, their assignments, and their examinations and answers in class. The analysis presented will here include only those components that were represented in the discourse of the seven high school students who were interviewed. When students were asked questions, there was evidence of the engagement of the various components of conceptual ecologies. These components include: epistemological commitments, metaphysical beliefs, the affective domain and emotional aspects, the nature of knowledge, the nature of learning, the nature of conceptions, and past experience. Evidence from this study suggests that these components might function as constraints to learning. This study contributes to the field by expanding our knowledge of the components of high school students’ conceptual ecologies through its definition of the categories and themes associated with those components. In examining across the range of components, the study illustrates the variety and sources of science conceptions within high school students’ conceptual ecologies.  相似文献   

7.
Findings are presented from a study of undergraduate students’ experiences of understanding in first-year engineering. At the end of their first year of study 86 Swedish students of electrical engineering and computer science were asked to reflect in writing on their experiences of studying and learning. Fifteen of them also took part in interviews which explored in some detail their experiences of understanding in relation to perceived constraints of the teaching-learning environment. The analyses of the students’ written accounts and the interview data focused on the students’ experiences of studying and of understanding in relation to course work in engineering. The majority of the students reported problematic first-year experiences and testified to a sensation of ‘falling out of phase’ with their studies. This sensation was frequently coupled with a lag in coming to understand course material, which may be characterised in terms of delayed understanding. The notion of delayed understanding is discussed in relation to ideas about students’ perceptions of the learning environment and the impact that those perceptions might have on students’ opportunities to reflect on learning material and develop a solid understanding of course material in engineering education. In conclusion, it is suggested that the the notion of delayed understanding captures the complications of a study situation in which a perceived lack of time to reflect on learning material obstructs students’ understanding of course material in engineering, and also points up a more general aspect of learning observing that time to reflect on previous experiences is an essential component of the process of coming to understand learning material in a particular educational setting.  相似文献   

8.
The purposes of this study were to investigate students’ conceptual learning outcomes and the effect of motivation on students’ conceptual learning outcomes in two different contexts: a Web-based and a classroom-based instruction, which incorporated the Dual Situation Learning Model (DSLM). Nine classes of Grade eight students (N = 190) were involved in the study; five classes participated in a Web-based context and four classes in a regular classroom-based context. The topic covered was chemical reaction. Students’ conceptual change outcomes were assessed using eight two-tier pre/post conceptual tests during the instruction and the reaction rate integrated conceptual test at the end of the instruction. Students’ motivation data were collected in the beginning and during instruction using the items from the Students’ Motivation Toward Science Learning (SMTSL) questionnaire. The data were analyzed using ANOVA, ANCOVA, bivariate correlation, and multiple regression analysis. Findings revealed that students’ motivational factors were correlated significantly with their conceptual learning outcomes in both Web-based and classroom-based science teaching. In the Web-based context, students’ motivation during the Web-based learning played a more important role on students’ conceptual learning outcomes than before learning.  相似文献   

9.
There is, no doubt, untapped potential in using technological tools to enhance the understanding of science concepts. This study examines the potential by observing 7th and 8th grade middle school students’ (n = 23) use of portable data collection devices in a nine-week elective class, Exploring Technologies. Students’ use of the data collection devices and subsequent interactions were traced through audiocassette and videocassette recordings, field notes, and student artifacts. The culminating activity for the course was a scientific investigation that required students to use the technologies to answer student-selected research questions. To illustrate the use of technology as a mediatory tool, an inquiry investigation of three student groups is described. In examining the three groups of middle school students the researchers encountered specific evidence of technology maximizing students’ science learning. The students were able to use the portable data collection devices in their investigations as they discussed scientific ideas related to temperature and heat. The study’s findings indicated that the three student groups were able to use the tools to conduct scientific inquiry and engage in scientific discourse. Further research on instructional approaches that allow students to develop expertise by using technology as tools to construct knowledge about complex phenomena is encouraged.  相似文献   

10.
This study draws on recent research on the central role of representation in learning. While there has been considerable research on students’ understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students’ engagement with evaporation phenomena through various representational modes. The study indicates how a focus on representation can provide fresh insights into the conceptual task involved in learning science through an investigation of students’ responses to a structured classroom sequence and subsequent interviews over a year. A case study of one child’s learning demonstrates the way conceptual advances are integrally connected with the development of representational modes. The findings suggest that teacher-mediated negotiation of representational issues as students construct different modal accounts can support enriched learning by enabling both (a) richer conceptual understanding by students, and (b) enhanced teacher insights into students’ thinking.  相似文献   

11.
Multicultural education, pragmatism, and the goals of science teaching   总被引:1,自引:1,他引:0  
In this paper, we offer an intermediate position in the multiculturalism/universalism debate, drawing upon Cobern and Loving’s epistemological pluralism, pragmatist philosophies, Southerland’s defense of instructional multicultural science education, and the conceptual profile model. An important element in this position is the proposal that understanding is the proper goal of science education. Our commitment to this proposal is explained in terms of a defense of an ethics of coexistence for dealing with cultural differences, according to which social argumentative processes—including those in science education—should be marked by dialogue and confrontation of arguments in the search of possible solutions, and an effort to (co-)live with differences if a negotiated solution is not reached. To understand the discourses at stake is, in our view, a key requirement for the coexistence of arguments and discourses, and the science classroom is the privileged space for promoting an understanding of the scientific discourse in particular. We argue for “inclusion” of students’ culturally grounded ideas in science education, but in a sense that avoids curricular multicultural science education, and, thus, any attempt to broaden the definition of “science” so that ideas from other ways of knowing might be simply treated as science contents. Science teachers should always take in due account the diversity of students’ worldviews, giving them room in argumentative processes in science classrooms, but should never lose from sight the necessity of stimulating students to understand scientific ideas. This view is grounded on a distinction between the goals of science education and the nature of science instruction, and demands a discussion about how learning is to take place in culturally sensitive science education, and about communicative approaches that might be more productive in science classrooms organized as we propose here. We employ the conceptual profile model to address both issues. We expect this paper can contribute to the elaboration of an instructional multicultural science education approach that eliminates the forced choice between the goals of promoting students’ understanding of scientific ideas and of empowering students through education.
Eduardo Fleury MortimerEmail:
  相似文献   

12.
This study investigates how the enactment of a climate change curriculum supports students’ development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum on students from three different urban high schools in the USA. Data collection included pre and posttest written assessments from all students (n = 75) and pre and post interviews from focal students (n = 22) to examine how students’ conceptual understandings, beliefs and environmental actions changed. Our analyses showed that at the beginning of the curriculum, the majority of students believed that climate change was occurring; yet, they had limited conceptual understandings about climate change and were engaged in limited environmental actions. By the end of the curriculum, students had a significant increase in their understanding of climate change and the majority of students reported they were now engaged in actions to limit their personal impact on climate change. These findings suggest that believing a scientific theory (e.g. climate change) is not sufficient for critical science agency; rather, conceptual understandings and understandings of personal actions impact students’ choices. We recommend that future climate change curriculum focus on supporting students’ development of critical science agency by addressing common student misconceptions and by focusing on how students’ actions can have significant impacts on the environment.  相似文献   

13.
This study reports teachers’ learning through action research on students’ conceptual understanding. The study examined (a) the teachers’ views about science teaching and learning, (b) the teachers’ learning about their teaching practices and (c) the conditions that supported the teachers’ learning through action research. A total of 14 elementary in-service teachers’ course discussion, self-video reflection, action research reports, and learning reflection were analyzed. Findings revealed that (a) the teachers in this study commonly espoused the importance of probing and utilizing students’ preconceptions in science teaching, but they demonstrated various levels of epistemological understanding of student learning and teaching, (b) the teachers experienced the action research as a means to evaluate science teaching methods and changing their teaching practices, and (c) the teachers identified sharing goals, problems, and solutions as an essential supporting condition for their learning through action research. Implications for professional development and further research are discussed.  相似文献   

14.
This study explored the effects of congruency between preferred and actual learning environment (PLE & ALE) perceptions on students’ science literacy in terms of science concepts, attitudes toward science, and the understanding of the nature of science in an innovative curriculum of High Scope Project, namely Sci-Tech Mind and Humane Heart (STMHH). A pre-/post-treatment experiment was conducted with 34 Taiwanese tenth graders involved in this study. Participating students’ preferred learning environment perception and pre-instruction scientific literacy were evaluated before the STMHH curriculum. Their perceptions toward the actual STMHH learning environment and post-instruction scientific literacy were also examined after the STMHH. Students were categorized into two groups; “preferred alignment with actual learning environment” (PAA) and “preferred discordant with actual learning environment” (PDA), according to their PLEI and ALEI scores. The results of this study revealed that most of the students in this study preferred learning in a classroom environment where student-centered and teacher-centered learning environments coexisted. Furthermore, the ANCOVA analysis showed marginally statistically significant difference between groups in terms of students’ post-test scores on scientific literacy with the students’ pre-test scores as the covariate. As a pilot study with a small sample size aiming to probe the research direction of this problem, the result of marginally statistically significant and approaching large sized effect magnitude is likely to implicate that the congruency between preferred and actual learning environments on students’ scientific literacy is noteworthy. Future study of this nature appears to merit further replications and investigations.  相似文献   

15.
In the learning sciences, students’ understanding of scientific concepts has often been approached in terms of conceptual change. These studies are grounded in a cognitive or a socio-cognitive approach to students’ understanding and imply a focus on the individuals’ mental representations of scientific concepts and ideas. We approach students’ conceptual change from a socio-cultural perspective as they make new meaning in genetics. Adhering to a socio-cultural perspective, we emphasize the discursive and interactional aspects of human learning and understanding. This perspective implies that the focus is on students’ meaning making processes in collaborative learning activities. In the study, we conduct an analysis of a group of students’ who interact while working to solve problems in genetics. In our analyses we emphasize four analytical aspects of the students’ meaning making: (a) the students’ use of resources in problematizing, (b) teacher interventions, (c) changes in interactional accomplishments, and (d) the institutional aspect of meaning making. Our findings suggest that students’ meaning making surrounding genetics concepts relates not only to an epistemic concern but also to an interactional and an institutional concern.
Anniken FurbergEmail:

Anniken Furberg   is a PhD student in education at InterMedia, the University of Oslo. After earning a master’s degree in education at the University of Oslo (1998) she spent four years working as a researcher at Telenor R&I. She still has her position in Telenor R&I but performs her PhD work on a daily basis at InterMedia, the University of Oslo. Her research interests include the socio-cultural approach to collaborative learning, socio-scientific issues, computer-supported learning, and analyses of students’ and teachers’ classroom talk. Hans Christian Arnseth   is an associate professor/research director at the Network for IT-Research and Competence in Education, University of Oslo. In 2004 he earned his PhD in education at the University of Oslo. He currently works with initializing and coordinating national and international research programs related to ICT in education. His research explores computer-supported collaborative learning, computer gaming and learning, and analyses of students’ classroom interaction.  相似文献   

16.
With increasing numbers of students learning science through a second language in many school contexts, there is a need for research to focus on the impact language has on students’ understanding of science concepts. Like other countries, Brunei has adopted a bilingual system of education that incorporates two languages in imparting its curriculum. For the first three years of school, Brunei children are taught in Malay and then for the remainder of their education, instruction is in English. This research is concerned with the influence that this bilingual education system has on children’s learning of science. The purpose was to document the patterns of Brunei students’ developing understandings of the concepts of living and non-living things and examine the impact in the change in language as the medium of instruction. A cross-sectional case study design was used in one primary school. Data collection included an interview (n = 75), which consisted of forced-response and semi-structured interview questions, a categorisation task and classroom observation. Data were analysed quantitatively and qualitatively. The results indicate that the transition from Malay to English as the language of instruction from Primary 4 onwards restricted the students’ ability to express their understandings about living things, to discuss related scientific concepts and to interpret and analyse scientific questions. From a social constructivist perspective these language factors will potentially impact on the students’ cognitive development by limiting the expected growth of the students’ understandings of the concepts of living and non-living things. A paper accepted by Research in Science Education, August, 2006.  相似文献   

17.
This article reports on the development of a Predict–Observe–Explain, POE-based teaching strategy to facilitate conceptual change and its effectiveness on student understanding of condensation. The sample consisted of 52 first-year students in primary science education department. Students’ ideas were elicited using a test consisting of five probe questions and semi-structured interviews. A teaching activity composed of three Predict–Discuss–Explain–Observe–Discuss–Explain (PDEODE) tasks was employed, based on students’ preconceptions identified with the test. Conceptual change in students’ understanding of condensation was evaluated via a pre-, post-, and delayed post-test approach and students’ interviews. Test scores were analyzed using both qualitative and quantitative methods. The findings suggested that the strategy helps students to achieve better conceptual understanding for the concept of condensation and enables students to retain these new conceptions in their long-term memory.  相似文献   

18.
Students’ learning interests and attitudes toward science have both been studied for decades. However, the connection between them with students’ life experiences about science and technology has not been addressed much. The purpose of this study is to investigate students’ learning interests and life experiences about science and technology, and also their attitudes toward technology. A total of 942 urban ninth graders in Taiwan were invited to participate in this study. A Likert scale questionnaire, which was developed from an international project, ROSE, was adapted to collect students’ ideas. The results indicated that boys showed higher learning interests in sustainability issues and scientific topics than girls. However, girls recalled more life experiences about science and technology in life than boys. The data also presented high values of Pearson correlation about learning interests and life experiences related to science and technology, and in the perspective on attitudes towards technology. Ways to promote girls’ learning interests about science and technology and the implications of teaching and research are discussed as well.  相似文献   

19.
This review explores Ben-Zvi Assaraf, Eshach, Orion, and Alamour’s paper titled “Cultural Differences and Students’ Spontaneous Models of the Water Cycle: A Case Study of Jewish and Bedouin Children in Israel” by examining how the authors use the concept of spontaneous mental models to explain cultural knowledge source of Bedouin children’s mental model of water compared to Jewish children’s mental model of water in nature. My response to Ben-Zvi Assaraf et al.’s work expands upon their explanations of the Bedouin children’s cultural knowledge source. Bedouin children’s mental model is based on their culture, religion, place of living and everyday life practices related to water. I suggest a different knowledge source for spontaneous mental model of water in nature based on unique history and traditions of South Korea where people think of water in nature in different ways. This forum also addresses how western science dominates South Korean science curriculum and ways of assessing students’ conceptual understanding of scientific concepts. Additionally I argue that western science curriculum models could diminish Korean students’ understanding of natural world which are based on Korean cultural ways of thinking about the natural world. Finally, I also suggest two different ways of considering this unique knowledge source for a more culturally relevant teaching Earth system education.  相似文献   

20.
This study investigated the effect of metaconceptual teaching interventions on students’ understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students’ reactions to metaconceptual teaching interventions. The participants (45 high school students in the USA) were enrolled in one of the two physics classes instructed by the same science teacher. In the experimental group, students’ engagement in metaconceptual knowledge and processes was facilitated through various instructional activities, including poster drawing, journal writing, group debate, concept mapping, and class and group discussions. These activities were intended to facilitate students’ engagement in (a) becoming aware of their existing and past conceptions, associated beliefs, everyday experiences, and contextual differences, (b) monitoring their understanding of the new conception, the changes in ideas, and the consistency between existing and new conceptions, and (c) evaluating the relative ability of competing conceptions to explain a physical phenomenon. In the comparison group, the same content knowledge was explained by the teacher along with the use of laboratory experiments, demonstrations, and quantitative problem solving. Students’ reactions to the designed instructional activities indicated that metaconceptual teaching interventions were successful in facilitating students’ engagement in several types of metaconceptual functioning. The results showed that students in the experimental group had significantly better conceptual understanding than their counterparts in the comparison group and this positive impact remained after a period of 9 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号