首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 提出问题笔者在"排列、组合和二项式定理"这一章的讲授即将完成时,进行了一次单元测试,其中的最后一道测试题是证明题,题目如下.证明:对于 n∈N~*,(1 1/n)~n<(1 1/(n 1))~(n 1).这道测试题本意是考查二项式定理中通项的应用及不等式证明的相关知识,难度较大,综合性也较强,考试结果令笔者大失所望.两个班90人中仅有五名学生完整地证出.由于利用晚自习考试,结束后就连夜评卷,第二天第一节课便对试卷进行讲评(这是笔者的一贯做法,试图有时效性吧).缺乏对问题的仔细推敲,笔者给出了如下证法.证明:欲证(1 1/n)~n<(1 1/(n 1))~(n 1),  相似文献   

2.
在初等数学中,二项式定理是一个非常重要的内客,有很多应用.(1-1)n=0(n∈Z*)是一个不可置疑的结论,本文应用二项式定理的相关知识给出它的一种证明.  相似文献   

3.
二项式定理是高考必考查的内容之一.每年高考试题中,都有1~2道二项式定理题出现.考点1:二项式定理和二项展开式的性质及利用它们计算和证明一些简单问题;考点2:用二项式定理证明不等式或比较大小.  相似文献   

4.
二项式系数C_n~0,C_n~1,C_n~2,…,C_n~n中奇数的个数是一个十分有趣的问题。它等价于求出二项展开式(1 x)~n中奇数项的问题。对n=0,1,2,3,4,…时的特殊情况,计算后可以得出这样一个结论:二项式系数中奇数的个数是2的一个方幂。自然要问它是2的几次方?或者对具体的n怎样来求出这个数?本文将证明: 定理 (1 x)~n中奇系数项的个数是2~k其中k是把n写成二进制的非零数字的个数。我们首先证明几个引理,然后利用它们来证明定理。引理1 在n=2~m-1时,C_n~(?)全是奇数。  相似文献   

5.
二项式定理相比方程、函数等中学数学的核心知识,与其关联的知识不是很多,显得很“独立”.然而它内涵丰富,在微分学、组合数学领域有广泛的应用.中学学习二项式定理,主要是掌握(a+b)n(n∈N)的展开式及简单应用,会用计数原理证明二项式定理[2].第一课时二项式定理内容的学习,是探究式教学的好素材,教学设计的共识是:不直接告诉学生定理,而是在教师的引导下,通过合情推理猜测结论,进一步证实结论,获得定理.  相似文献   

6.
不等式{1+1/n}^n〈3(n∈N^*)的证明通常是利用二项式定理将{1+1/n}^n展开,然后结合不等式的放缩技巧完成.笔发现,可以利用导数对此不等式给出一种简捷的证明,其证法如下:[第一段]  相似文献   

7.
本文用构造法证明了六个不等式,希望对读者能有所参考. 1.构造二项式例1 当n∈N,n≥3时, 求证:2n-1/2n 1>n/n 1. (91年“三南”高考) 分析原不等式等价于: 当n∈N,n≥3时,证明不等式2n>2n 1,由二项式定理,知  相似文献   

8.
lim(1+(1/n))~n=e,这是一个重n→∞要的极限,在微积分学中要经常使用它来求其它极限的存在。一般书上大多采用二项式定理来证明数列(1+(1/n))~n的单调有  相似文献   

9.
1提出问题 笔者在“排列、组合和二项式定理”这一章的讲授即将完成时,进行了一次单元测试,其中的最后一道测试题是证明题,题目如下。  相似文献   

10.
二项式定理是排列、组合知识应用的重要方面 .又是发现推导新的组合恒等式的重要途径 .二项式定理应用的主要方面有 :求展开式中的某一项或某一项系数的问题 ,求所有项系数的和或者奇数项、偶数项系数和的问题 ,求二项式某一项中字母的值的问题 ,求近似值的问题等等 .下面我们就其基本知识方法和作了一些归纳 ,希望对同学们有所帮助 .基本知识 :(一定 )即二项式定理本身 :( a + b) n =C0nan + C1nan- 1b +… + Crnan- rbr +…+ Cnnbn ( n∈ N * )(二通 )即通项公式 :Tr+ 1=Crnan- rbr( 0≤ r≤ n)(三性 )即二项式系数性质 :( 1)对称性 :…  相似文献   

11.
1988年全国高中数学联赛第一试第五题是“已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N,(a b)~n-a~n-b_n≥2~(2n)-2~(n 1)。此题一般用数学归纳法证明,笔者曾在南宁《中学理科》1989年第4期上利用二项式定理及二元均值不等式给出一种妙证。下面借助二项式定理及(2~n-2)元均值不等式给出又一巧妙证法,这只需将C_n~ra~(n-r)b~r看成C_n~r个a~(n-r)b~r。  相似文献   

12.
张闽 《数学教学》2006,(5):18-19
高二数学拓展型课程教材中《二项式定理》的最后一段给出了二项式定理的一个应用: 由二项展开式(1 x)n=1 Cn1x Cn2x2 Cn3x3 … Cnnxn,(n∈N*),可以看出当|x| 很小时,x2,x3,…,xn与零非常接近,并且在n 不太大时,Cn2x2,Cn3x3,…,Cnnxn的值也与零非常接近.所以在这种条件下,可用1 nx表示 (1 x)n的近似值,即(1 x)n≈1 nx.例如:  相似文献   

13.
二项式定理是将(a+b)n 展开成多项式,其展开式的通项为Tk+1=Ckn an-kbk (k=0,1,…,n),其中Ckn称为二项式系数.利用二项式定理可以推导出C0n+C1n+…+Cnn=2n ,即证明了有n个元素的集合的子集个数为2n 个.因此,我们可以利用二项式定理计算有关组合数和(ax+b)n 展开式中xk ...  相似文献   

14.
本文用初等方法研究二项式定理的推广。对于正整数n,已知对于负指数,如我们将要证明的,对应的结果是:如果-1相似文献   

15.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

16.
祁昌才 《甘肃教育》2008,(16):62-62
二项式定理中二项式系数之和的问题 二项式定理:(a+b)^n=Cn^0a^n+Cn^1a^n-1b+Cn^2a^n-2b^2+…+Cn^ra^n-rb^r+…+Cn^nb^n(n∈N*,0〈r〈n).  相似文献   

17.
在不少的数学刊物中刊登了对求证:n~(n 1)>(n 1)~n(3≤n∈N)这道不等式题的证明,而多数采用的是数学归纳法或二项式定理给予证明的。其实用微分中的导数的性质来证明此题也较为简单。思考:要证明n~(n 1)>(n 1)~n成立,变形为n~(1/n)>(n 1)~(1/(n 1)),由此可以看出只要证明函数f(x)=x~(1/x)(x≥3)为减函数,此题就迎刃而解了。证明:设 f(x)=x~(1/x)(x≥3) 则 f′(x)=(x~(1/x))′=(e~(1/xlnx))′ =e~(1/xlnx)·(1-lnx)/x~2。  相似文献   

18.
大家熟知的牛顿二项式定理是指下面的公式:(a+b)~n=c_n~0a~n+c_n~1a~(n-1)b+c_n~2a~(n-2)b~2+…+c_n~nb~n,(n∈N) (1)式(1)的右边的式子叫(a+b)~n的二项展开式,在教科书上,公式(1)的证明通常是采用数学归纳法,在本文中,我们将给二项式定理一种新的、有趣的证法,这种证法依赖于函数方程的解。  相似文献   

19.
利用二项式定理证明不等式,是二项式定理的一个重要应用.  相似文献   

20.
二项式定理是中学数学的重要定理.它的解决方法大致有:一是观察归纳提出猜想,再用数学归纳法加以证明;二是应用组合思想方法.对于二项式(α+6)^n的展开式的推广(α1+α2+…+αm)^n的展开式又是怎样呢?本文应用组合思想方法来探讨这一问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号