首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
平均不等式是解决最值问题的常用方法之一 ,但是利用它求最值必须满足“一正、二定、三相等”3个基本条件 .有些最值问题 ,在运用平均不等式时等号不能成立 ,此时 ,可适当引入参数 ,利用待定系数法 ,解决平均不等式中等号不能成立的问题 .下面举例加以说明 .一、f(x) =axm + bxn(a ,b ,m ,n>0 )例 1  (2 0 0 0年上海市高考题 )已知函数f(x) =x2 + 2x+ax ,x∈ [1,+∞ ) ,若a=12 ,求函数 f(x)的最小值 .分析 当a=12 时 ,f(x) =x + 12x+ 2≥ 2 12 + 2 ,当且仅当x =12x,即x =22 时取等号 .但 22<1,不在函数定义…  相似文献   

2.
构造法是一种创造性的数学方法 ,它通过在条件和结论之间建立中转站 ,使条件迅速向结论转化 ,不但可以培养人的创造性思维 ,而且更能让人领悟到数学的无穷乐趣和魅力 .这里略举几例 :例 1 已知a ,b ,c∈R ,a +b+c =m ,a2 +b2 +c2 =m22 (m >0 ) ,求证 :0 ≤a≤2m3 .分析 此题关键在于利用已知条件 ,建立a的不等式 ,解得a的最大值 .这里可以消去c得到b的一元二次方程 ,再利用b∈R和Δ≥ 0 ,可以得到a的不等式 ,从而得证 .若构造关于b、c的二次函数 ,则更妙 .解 令f(x) =(x-b) 2 +(x-c) 2 ,则f(x) =2x2 -2…  相似文献   

3.
在众多的高三复习资料中流行着这样一个问题 :“已知a2 b2 c2 =1 ,x2 y2 z2 =9,ax by cz≤t,求t的最小值 .”批阅学生作业时发现绝大多数学生产生下面的误解 .求t的最小值即求u =ax by cz的最大值 .因为ax≤ a2 x22 ,by≤ b2 y22 ,cz≤c2 z22 .所以ax by cz≤ 12 (a2 x2 b2 y2 c2 z2 ) =5 .故u =ax by cz的最大值是 5 ,即t的最小值是 5 .错误剖析 :应用基本不等式得到u =ax by cz≤ 5是正确的 ,这只能说u最大值小于或等于 5 ,并不能得出u的最大值是 5 …  相似文献   

4.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

5.
向量不仅是解决立体几何、解析几何的有力工具 ,也是解决代数和三角问题的有力工具 ,它可使许多代数和三角问题的求解过程变得轻松 ,生动 ,给人以数学美的享受 .它为解决中学数学问题开避了一条新的途径 .一、比较大小例 1 已知a ,b∈R ,0 <x<1,试比较a2x + b21-x 与 (a +b) 2 的大小 .解 设向量m=ax,b1-x ,n=(x ,1-x) .由 (m·n) 2 ≤|m|2 |n|2 ,得(a +b) 2=ax·x + b1-x· 1-x2≤ a2x + b21-x x+ (1-x)=a2x + b21-x.例 2  (2 0 0 0年河北省高中数学竞赛试题 )已知a ,b∈R ,m ,n∈R+…  相似文献   

6.
若x2a2 +y2b2 =1,则有不等式a2 +b2 ≥ (x±y) 2 .这个不等式很容易证明 :a2 +b2 =(a2 +b2 ) x2a2 +y2b2=x2 +y2 +b2 x2a2 +a2 y2b2≥x2 +y2 +2xy=(x +y) 2 ,用 -y代y ,得a2 +b2 ≥ (x -y) 2 .由于条件是椭圆的方程 ,所以我们称上面的不等式为椭圆不等式 .这个不等式的应用很广泛 ,特别是用来求“希望杯”数学竞赛中二元函数的最值或值域问题时显得更加简便 .一、求二元函数的最值例 1 已知a ,b∈R且a +b+1=0 ,求(a -2 ) 2 +(b-3 ) 2 的最小值 .解 设 (a-2 ) 2 +(b -3 ) 2 =t,则(a-2 ) 2…  相似文献   

7.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

8.
构造平面向理 巧解最值问题   总被引:1,自引:0,他引:1  
最值问题是数学奥林匹克中的热门试题 .它技巧性强 ,难度大 ,解法活 .本文利用高中数学新教材中新增的重要内容———平面向量 ,巧解一类最值问题 .1 求不等式恒成立时的参数最值例 1  (1992年上海市高三数学竞赛试题 )若正数使不等式 :x +y≤ax +y对一切正数x、y成立 ,则a的最小可能值是_____ .解 构造向量 a =(x ,y) , b=(1,1) .由 | a· b|≤| a|| b| ,得  x+ y≤ 2 · x+y.当且仅当 a与 b同向 ,即x =y时 ,等号成立故a的最小可能值是 2 .例 2  (2 0 0 0年第 11届“希望杯”全国数学邀请赛高…  相似文献   

9.
几个不等式问题的统一处理   总被引:1,自引:0,他引:1  
1 几个不等式问题问题 1 设a >0 ,b >0 ,a3 b3=2 ,求证 :a b≤ 2 . (1 986年宿州市初中数学竞赛试题 )《中学数学教学参考》2 0 0 2年第 7期发表的文 [1 ]专门对这一个问题的多种表述形式和多种解法进行了综述 .问题 2 设x ,y∈R ,x y =1 ,n >0 ,λ >0 ,求1x  相似文献   

10.
文 [1]应用待定系数法和柯西不等式给出了下面函数的最小值 .定理 1 函数y=asinx+bcosx,x∈ (0 ,π2 ) ,a、b为正常数 ,则 ymin =(a23 +b23 ) 32 .本文应用二元赫尔德 (Holder)不等式给出上面定理 1的推广 .定理 2 函数y =asintx +bcostx(x∈ (0 ,π2 ) ,a、b为正常数 ,且t∈R ,(t≠ 0 ,2 ) ,在x =arctan(ab) 12 -t处取得最值 (a22 -t+b22 -t) 2 -t2 ,其中(1)当t∈ (0 ,2 )时 ,y取最大值 ;(2 )当t∈ (2 ,+∞ )时 ,y取最小值 ;(3)当t∈ (-∞ ,0 )时 ,y取最小值 .引理 …  相似文献   

11.
文 [1]作者用均值换元法证明了两个简单的条件不等式问题 ,并给出了四个推广 .其实 ,我们可以给出它的一个统一推广 ,并用中学生熟悉的柯西不等式 (∑ni=1aibi) 2 ≤ ∑ni=1a2 i·∑ni=1b2 i、向量的数性积不等式 a· b≤| a|| b|及函数的单调性等知识就可简洁证明 .推广 已知 ∑ni=1ai =k ,且ai ≥ 0 (i=1,2 ,… ,n) ,k >0 ,l>0 ,m >0 ,则lk m (n- 1) m ≤ ∑ni =1lai m≤ n(lk nm) .证法 1 先证右边不等式 ,用柯西不等式 ,∵ ∑ni=1lai m =∑ni=1lai m· 1≤ ∑ni=…  相似文献   

12.
本文通过几例 ,说明“已知一元二次不等式的解集求参数及可化为此类型的问题”的解法 .其根据是一元二次不等式的解集一般是以相应方程的根为端点的 .例 1 不等式ax2 +5x +b>0的解集是x 13<x <12 ,求a、b的值 .解 :由题设知 13、12 应是方程ax2 +5x +b=0的两根 .由韦达定理得13+12 =- 5a,13·12 =ba ,即 a =- 6 ,b =- 1.评注 :本题解法紧扣方程与不等式的关系 ,利用韦达定理 ,迅速获解 .例 2 若关于x的不等式x >ax +32 的解集为 {x|4 <x <m},求实数a、m的值 .解 :令x =t,则t∈ ( 2 ,m) .原不等式化为at2 …  相似文献   

13.
对于某些不等式的证明 ,若认真分析题目的条件和结论 ,构造适当的向量 ,然后借助向量的数量积的性质|m·n|≤|m|·|n| ,往往可以使某些不等式得到证明 .例 1 已知a ,b∈R ,求证 :a +b22 ≤ a2 +b22 .证明 设m =(a ,b) ,n =( 1,1) .由 |m·n|2 ≤|m|2 ·|n|2 ,得(a +b) 2 ≤ (a2 +b2 )· 2 ,∴ a +b22 ≤ a2 +b22 .例 2 设a ,b ,c,d∈R .证明 :ac+bd≤ a2 +b2 · c2 +d2 .证明 设m =(a ,b) ,n =(c,d) .由|m·n|≤|m|·|n| ,得|ca+bd|≤ a2 +b2 ·c2 +d2 …  相似文献   

14.
最值问题是中学数学中一个重要内容 ,其涉及面广 ,难度较大 ,求解方法灵活多样 .本文通过构造函数和曲线来解决某些最值问题 ,不仅形象直观、易于掌握 ,而且可以减少许多不必要的计算 ,达到化难为易的目的 .一、构造函数求最值1 .构造二次函数例 1 设a b c d e =8,a2 b2 c2 d2 e2 =1 6,求e的最大值 .解 :设f(x) =(x a) 2 (x b) 2 (x c) 2 (x d) 2=4x2 2 (a b c d)x a2 b2 c2 d2显然f(x) ≥ 0 ,且x2 的系数为正 ,则△ =b2 -4ac≤ 0 ,即4(a b c d) 2 -1 6(a2 b2 c2 d2 )=4( 8…  相似文献   

15.
公差d≠ 0的等差数列 an ,它的前n项和Sn 是关于n的二次函数 :Sn =na1 +n(n- 1)2 d =d2 n2 +a1 - d2 n .所以 ,当d >0 ,Sn 有最小值 ;当d <0 ,Sn有最大值 .由于函数Sn 与一般二次函数f(x) =12 dx2+a1 - d2 x(x∈R)的定义域不同 ,因此在求最值的方法上又有其特殊性 .下面就这类问题探讨几种思考途径 .一、研究通项的符号 ,求Sn 的最值例 1 一个首项为正数的等差数列an ,前 3项之和与前 11项之和相等 ,则前几项和最大 ?解 由S3=S1 1 ,得a4 +a5+… +a1 0 +a1 1 =0 ,∵ a4 +a1 1 =a5+a1 0…  相似文献   

16.
定理 二次函数 y =ax2 bx c的值域是[0 , ∞ )的充要条件是a>0且b2 - 4ac=0 .证明 因为 y =ax2 bx c =a(x b2a) 2 4ac-b24a ,x∈R ,所以二次函数y=ax2 bx c的值域是 [0 , ∞ ) y的最小值是 0 ,无最大值 a>0且b2 - 4ac=0 .下面举例说明定理的应用 .例 1 已知 f(x) =2x2 bx cx2 1(b <0 )的值域为[1,3] ,求实数b,c的值 .解 f(x)的定义域为R .由 1≤2x2 bx cx2 1≤ 3,得x2 bx c- 1≥0且x2 -bx 3-c≥ 0 .所以 f(x)的值域为 [1,3] y1=x2 bx c- 1和 …  相似文献   

17.
袁金 《中等数学》2003,(2):35-37
一、选择题 (每小题 6分 ,满分 36分 )1.已知集合P ={x|x2 =1}和Q ={x|mx =1} .若Q P ,则实数m可取值的个数为 (   ) .(A) 0   (B) 1   (C) 2   (D) 32 .若a、b是任意实数 ,且a >b ,则下列不等式一定成立的是 (   ) .(A)a2 >b2 (B) ba <1(C)lg(a -b) >0 (D) 12a<12b3.如果圆x2 +y2 =k2 至少覆盖函数f(x)= 3sinπxk 的一个最大值点和一个最小值点 ,则k的取值范围是 (   ) .(A) |k|≥ 3(B) |k|≥ 2(C) |k|≥ 1(D) 1≤ |k|≤ 24 .已知OP =(2 ,1) ,OA =(1,7) ,OB =(5 ,1)…  相似文献   

18.
二维柯西不等式 :设a、b、c、d∈R ,则有(a2 b2 ) (c2 d2 )≥ (ac bd) 2 .当且仅当 ac =bd 时 ,不等式取等号 .1 推证几个重要结论命题 1 椭圆 x2a2 y2b2 =1与直线Ax By C =0有公共点的充要条件是A2 a2 B2 b2 ≥C2 .证明 由柯西不等式得(Ax By) 2 =Aa· xa Bb· yb2≤A2 a2 B2 b2 x2a2 y2b2 .若 (x0 ,y0 )是已知椭圆和直线的公共点 ,则满足x20a2 y20b2 =1、Ax0 By0 C =0 ,则上述不等式左边为C2 ,右边为A2 a2 B2 b2 ,充分性得证 .若 (x ,y)是直线上…  相似文献   

19.
关于函数y=asintx+bcostx的最值 ,文[1 ] 应用赫尔德 (Holder)不等式给出了如下定理 :定理 函数y=asintx+bcostx ,x∈ (0 ,π2 ) ,a、b为正常数 ,且t ∈R(t≠ 0 ,2 ) ,在x =arctan(ab) 1 2 -t 处取得最值 (a22 -t +b22 -t) 2 -t2 ,其中(1)当t∈ (0 ,2 )时 ,y取得最大值 ;(2 )当t∈ (2 ,+∞ )时 ,y取得最小值 ;(3)当t∈ (-∞ ,0 )时 ,y取得最小值 .本文应用凸函数的性质给出上述定理的另一证明及其推广 .首先介绍凸函数的一个性质 (引理 ) :引理 ①设函数f(u)是定义在区间Ⅰ…  相似文献   

20.
知识链接  二次函数y=ax2 +bx +c(a≠ 0 )的顶点坐标是- b2a,4ac-b24a .所以 ,当a <0 ,x =- b2a时 ,二次函数有最大值y =4ac-b24a ;当a >0 ,x =- b2a时 ,二次函数有最小值y =4ac-b24a .例 1 用长 8m的铝合金条制成如图 1形状的矩形窗框 ,使窗户的透光面积最大 ,那么这个最大透光面积是 (   ) .(A) 6 42 5 m2   (B) 43m2   (C) 83m2   (D) 4m2(2 0 0 1年浙江省金华市中考题 ) 解 设窗户的宽为xm ,高为ym ,则 3x+2y=8.∴ y =4- 32 x .设透光面积为Sm2 ,则S =xy=x 4- 32 x …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号