共查询到20条相似文献,搜索用时 15 毫秒
1.
二面角是用来反映两个平面位置关系的一个重要数学概念,是现行教材中的重点和难点内容,也是历届高考的热点之一.本文从一道立体几何题就二面角的平面角常见的各种求法进行如下的探索与总结.问题在正方体ABCD-A1B1C1D1中,求二面角C1-D1B-C的大小.解法1直接法.借助题目给出的几何 相似文献
2.
温得成 《数学学习与研究(教研版)》2010,(9):69-69
在立体几何中我们经常遇到求二面角的问题,尤其是利用向量解二面角问题时,有时遇到一些坐标系不易建立的问题,下面的方法帮我们解决了这一问题. 相似文献
3.
4.
7.
8.
纵观历年高考试题,二面角问题在立体几何解答题中占有很大的分量;而二面角问题又因其灵活性极强、计算量较大的特点成为学生望而生畏的一类问题.本文介绍一种利用向量积求法向量解决二面角的方法,精简了分析计算的过程、省去了判断法向量方向的步骤,便于在短时间内求解二面角. 相似文献
9.
10.
11.
12.
13.
求二面角的大小是立体几何中的重点和难点,也是多年来高考的考查热点.利用三垂线定理(或逆定理)求二面角的大小是我们常用的基本方法,也是重要的方法.当然,我们在掌握基本方法(三垂线法)的同时还应该去研究二面角的其他求法.本文就一道高考题谈谈二面角的求法,供参考.题目(2006 相似文献
14.
15.
二面角是高中立体几何中的一个重要内容,也是一个难点,求解有关二面角问题时,往往需要根据题设条件找出二面角的平面角.下面通过具体例题,试把求二面角的平面角的方法归纳为以下几种类型. 相似文献
16.
17.
立体几何中,空间角有线线角、线面角与面面角三类,而二面角又是高中数学教学的重点和难点,其难就难在它不能直接度量,需借助于它的平面角来度量.而平面角既“死”又“活”,说它“死”,是指其三个条件:(1)顶点在棱上;(2)边分别在两个半平面内;(3)边与棱垂直.三者缺一不可,尤其是线线垂直不直观,难以把握,说它“活”,就是指它的顶点在棱上没有固定位置,具有开放性.为突破这一难点,下面举例谈谈常见的二面角求法. 相似文献
18.
求二面角的大小是立体几何中的一个重点问题,关键是如何作出二面角的平面角.如果二面角的棱没有给出,其难度增加许多.本文通过2001年全国高考数学试题(理)第17题(Ⅱ)介绍这类问题的几种求法。 相似文献
19.
20.
空间距离的计算是立体几何计算问题的基础和重心,也是高考立体几何试题的热点.这一部分一般包括点点距,点线距,点面距,面面距和异面直线间的距离.这六种距离在旧教材中通常是采用"一作,二证,三计算"的方法求解.对学生来说是较难掌握的一种方法,难就难在"一作"上,所谓的"一作"就是作出点面距中的垂线段,异面直线的公垂线段.除非有相当的基本功,否则这种方法很难运用自如.但在新教材中由于学生学习了向量,我们可以避开作(或找)公垂线段、垂线段的麻烦,利用向量直接计算就可得到结果,因此更容易让学生接受、掌握.现将此法作简单介绍. 相似文献