首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二次函数y=ax~2+bx+c(a≠0),若令y=0,即为一元二次方程ax~2+bx+c=0(a≠0).由此可见,二次函数与一元二次方程之间有着密切的联系.用数形结合的思想来理解,对它们之间的内在联系的认识将更为深刻,更有利于灵活地解题,提高解题水平.  相似文献   

2.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

3.
一元二次方程ax~2+bx+c=0和二次函数y=ax~2+bx+c的关系密不可分。在y=ax~2+bx+c中,当y=0时,就变成了ax~2+bx+c=0。而一元二次方程ax~2+bx+c=0的两根x_1,x_2,就是二次函数y=ax~2+bx+c的图象与x轴交点的横坐标。因此,根与系数的关系不但可以用于方程这中,也常用于二次函数之中。 一 求待定系数的值 例1 抛物线y=x~2-(2m-1)x-2m与x轴的  相似文献   

4.
二次函数与一元二次方程之间有着密切的联系.在二次函数y=ax~2+bx+c(a≠0)中.令y=0,即得一元二次方程ax~2+bx+c=0.若此时方程有实数根,则此实数根就是二次函数图象与x轴交点的横坐标.从这个基本事实出发,即可得到如下一些基本关系: 1.判别二次函数图象与x轴有无交点,可运用相应的一元二次方程根的判别式△=b~2-4ac,即  相似文献   

5.
《考试》2007,(3)
二次三项式ax~2 bx c(a、b、c是常数,a≠0),对于x的每一个确定的值,都有惟一确定的代数式值与之对应,若把代数式的值用字母,,来表示,即y=ax~2 bx c(a、b、c是常数,a≠0),这就是二次函数。因此二次函数与二次二项式有着密切的联系。当ax~2 bx c的值为0。就是一元二次方程;当ax~2 bx c的值不为零,就是一元二次不等式:这正是代数式、函数、方程、  相似文献   

6.
<正>我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c (a≠0)的图象与x轴交点的横坐标.在求解相关问题时,它们之间的这种关系如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.下面举例说明.一、判断二次函数图象与x轴的交点情况  相似文献   

7.
为了二次函数都知道:二次函数y=ax2+bx+c(a、b、c为常数,a≠0),当y=0时,则此函数形式化为ax2+bx+c=0(a≠0).即二次函数就化为一元二次方程了。所以一元二次方程实际上就是二次函数的特殊形式。因此,二次函数与x轴的交点问题就可以用一元二次方程根的分布和判定定理来解决。下面我们就用例子来谈谈二次函数与x轴的交点。  相似文献   

8.
<正>二次函数与一元二次方程是数学的基础知识,它们之间具有千丝万缕的联系。二次函数y=ax~2+bx+c(a≠0)的图像与x轴有交点时,交点横坐标的值就是方程ax~2+bx+c=0(a≠0)的根。在一元二次方程中,当b~2-4ac>0时,方程有两个不相等的实数根;当b~2-4ac=0时,方程有两个相等的实数根;当b~2-4ac<0时,方程无实数根。其对应的二次函数图像与x轴分别有两个交点、一个交点和无交点。一、二次函数的交点问题  相似文献   

9.
二次函数y=ax~2+bx+c(a≠0)在中学代数课程里占有极重要的地位.涉及二次函数的问题是多种多样的,例如求二次函数的解析式,最值问题,函数图象的性质,与一元二次方程ax~2+bx+c=0(a≠o0的实根的存在性和根的性质的关系,与一元二次不等式的解集的关系,等等.如果再与几何问题、三角函数问题等混合在一起,能构成更加丰富多采的综合题.因此,这种综合题就成了历年来各省市中考试题中常见的重要题型.  相似文献   

10.
二次函数与一元二次方程关系密切,二者之间常常可以相互转化.由一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次函数的一般式y=ax2+bx+c(a≠0),  相似文献   

11.
一元二次方程ax2+bx+c(a≠0)和二次函数y=ax2+bx+c=0(a≠0)就像一对孪生兄弟,不但外貌相似,而且关系非常亲密.从"数"的角度看,一元二次方程的根就是二次函数的函数值为0时自变量的值;  相似文献   

12.
正一元二次方程以及二次函数是九年级的重要内容,它们之间联系紧密。我现对它们的关系加以总结、归纳,来帮助学生学习和复习。二次函数通用解析式为:y=ax2+bx+c(a、b、c为常数,a≠0),一元二次方程一般形式为ax2+bx+c=0(a、b、c为常数,a≠0),单从形成上看就很像。当二次函数的值为零时,也就是说求解二次函数与x轴交点问题时,可转化为一元二次方程来解决。一、一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c图像与x轴的交点1.△0时,方程有两个不相等的实数根x1、x2,二次函数与x轴有两个不同的交点,其  相似文献   

13.
(接上期)考点7二次函数的概念、图象及其性质[知识要点]1.函数y=(a,b,c是常数,a≠0)叫做二次函数.当a≠0,b=c=0时,则y=;当a≠0,b=0,c≠0时,则y=;当仅有c=0时,则y=.这些函数都叫做.把二次函数y=ax2+bx+c(a≠0)通过配方写成y=a()2+,由此可知对称轴是,顶点坐标是(,).2.二次函数y=ax2+bx+c(a≠0)的图象是一条;当a>0时,开口向,当x=时,函数有值;当a<0时,开口向,当x=时,函数有值.3.对于二次函数y=ax2+bx+c(a≠0),a确定图象的,c确定图象与y轴的交点坐标是,Δ=b2-4ac确定图象与轴是否相交,当Δ>0时,抛物线与x轴有两个不同交点,当Δ=0时,抛物线与x轴只…  相似文献   

14.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

15.
一、初等函数的概念一次函数y=ax+b(a≠0),二次函数y=ax~2+bx+c(a≠0),指数函数y=a~x(a>0且a≠1),对数函数y=log_ax(a>0且a≠1),幂函数y=x~a,其中a为任意实数,三角函数  相似文献   

16.
1.二次方程与二次函数一元二次方程ax~2 bx=0与二次函数y=ax~2 bx c(a≠0)有着密切的联系,二次方程的根实质上是相应二次函数的零点(即使函数值为零的点),许多二次方程的问题,特别是关于二次方程的根的分布问题,要利用二次函数及其图象才能解决,反之,有关二次函数的问题,也常利用二次方程来解。  相似文献   

17.
<正>一元二次方程ax2+bx+c=0的根是二次函数y=ax2+bx+c=0的根是二次函数y=ax2+bx+c(a≠0)的零点,即抛物线与x轴交点的横坐标,关于一元二次方程ax2+bx+c(a≠0)的零点,即抛物线与x轴交点的横坐标,关于一元二次方程ax2+bx+c=0根的分布情况是同学们学习的难点,我结合二次函数图像,对一元二次方程根的分布问题进行了一些探讨和总结。设一元二次方程ax2+bx+c=0根的分布情况是同学们学习的难点,我结合二次函数图像,对一元二次方程根的分布问题进行了一些探讨和总结。设一元二次方程ax2+bx+c=0的两个  相似文献   

18.
本文中的三个"二次"是指:二次函数y=ax2+bx+c(a≠0),一元二次方程ax2+bx+c=0(a≠0),一元二次不等式ax2+bx+c>0或<0(a≠0).在初中数学学习中,二次函数、一元二次方程是中考的必考内容,尤其二次函数综合性较强,使得学生难以理解和掌握,一元二次不等式虽不是初中阶段  相似文献   

19.
二次函数y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系是:二次函数y=ax^2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax^2+bx+c=0(a≠0)的根;反之,一元二次方程ax^2+bx+c=0(a≠0)的根是二次函数y=ax^2+bx+c(a≠0)的图象与x轴交点的横坐标.它们之间的这种关系在求解相关的问题时,如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.  相似文献   

20.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号