首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30?h) at 60% maximal oxygen uptake ([Vdot]O2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22?ml?·?kg?1 body mass) in the first hour of the recovery interval (n = 8) and 500?ml just before exercise, followed by 250?ml every 20?min during exercise in the first (n = 9) and second exercise bouts (n = 9). Timed unstimulated saliva samples were collected at 10?min before exercise, after 48?–?50?min of exercise and during the last 2?min of exercise, at 1?h post exercise, 2?h post exercise (first exercise bout only), and 18?h post exercise (second exercise bout only). Venous blood samples were taken 5?min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2?h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90?min cycling at 60% [Vdot]O2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

2.
Li TL  Gleeson M 《Journal of sports sciences》2004,22(11-12):1015-1024
The purpose of this study was to establish the effect of exercise at different times of day on saliva flow rate, immunoglobulin A (sIgA) concentration and secretion rate, and alpha-amylase activity, and to establish how these parameters change following a second exercise bout performed on the same day. In a counterbalanced design, eight male volunteers participated in three experimental trials separated by at least 4 days. On the trial with afternoon exercise only, the participants cycled for 2 h at 60% VO2max starting at 14:00 h. On the other two trials, participants performed either two bouts of exercise at 60% VO2max for 2 h (the first started at 09:00 h and the second started at 14:00 h) or a separate resting trial. Unstimulated saliva samples were obtained 10 min before exercise, after 58 - 60 min and during the last 2 min of exercise, and at 1 h and 2 h after exercise. Venous blood samples were taken 5 min before exercise and immediately after exercise for both bouts. Participants remained fasted between 23:00 h on the day before the trials and 18:00 h on the day of the trial. Circadian variations were found in sIgA concentration, which decreased with time from its highest value in the early morning to its lowest value in the evening, and salivary alpha-amylase secretion rate, which increased from its lowest value in the morning to its highest value in the late afternoon. Cycling at 60% VO2max for 2 h significantly decreased saliva flow rate, increased sIgA concentration and alpha-amylase activity, but did not influence sIgA secretion rate. Performing prolonged cycling at different times of day did not differentially affect the salivary and plasma hormonal responses in the short term. Performance of a second prolonged exercise bout elicited a greater plasma stress hormone response but did not appear to compromise oral immunity acutely. These findings also suggest that, in terms of saliva secretion, sIgA and alpha-amylase responses, a 3 h rest is enough to recover from previous strenuous exercise. During such exercise, sympathetic stimulation appears to be strong enough to inhibit saliva flow rate; however, it appears that it does not increase sIgA output via transcytosis.  相似文献   

3.
The aim of this study was to determine the effect of carbohydrate (CHO) versus placebo (PLA) beverage consumption on the immune and plasma cortisol responses to a soccer-specific exercise protocol in 8 university team soccer players. In a randomized, counterbalanced design, the players received carbohydrate or placebo beverages before, during and after two 90min soccer-specific exercise bouts (3 days apart) designed to mimic the activities performed and the distance covered in a typical soccer match. Blood and saliva samples were collected before, during and after the exercise protocol. Plasma lactate concentration increased to ~4 mmol.l-1 at 45 and 90 min of exercise in both treatments (P? 0.01). Plasma glucose concentration was significantly lower after 90 min of exercise with ingestion of the placebo than the carbohydrate (PLA: 4.57 +/- 0.12 mmol.l-1; CHO: 5.49 +/- 0.11 mmol.l-1; P? 0.01). The pattern of change in plasma cortisol, circulating lymphocyte count and saliva immunoglobulin A secretion did not differ between the carbohydrate and placebo trials. Blood neutrophil counts were 14% higher 1 h after the placebo trial than the carbohydrate trial (PLA: 4.8 =/- 0.5 x 10 9 cells.l-1; CHO:4.2 +/- 0.5 x 10 9 cells.l-1; P=0.06),but the treatment had no effect on the degranulation response of blood neutrophils stimulated by bacterial lipopolysaccharide. We conclude that, although previous studies have shown that carbohydrate feeding is effective in attenuating immune responses to prolonged continuous strenuous exercise, the same cannot be said for a soccer-specific intermittent exercise protocol. When overall exercise intensity is moderate,and changes in plasma glucose, cortisol and immune variables are relatively small, it would appear that carbohydrate ingestion has only a minimal influence on the immune response to exercise.  相似文献   

4.
The aim of this study was to determine the effect of carbohydrate (CHO) versus placebo (PLA) beverage consumption on the immune and plasma cortisol responses to a soccer-specific exercise protocol in 8 university team soccer players. In a randomized, counterbalanced design, the players received carbohydrate or placebo beverages before, during and after two 90 min soccer-specific exercise bouts (3 days apart) designed to mimic the activities performed and the distance covered in a typical soccer match. Blood and saliva samples were collected before, during and after the exercise protocol. Plasma lactate concentration increased to approximately 4 mmol x l(-1) at 45 and 90 min of exercise in both treatments (P<0.01). Plasma glucose concentration was significantly lower after 90 min of exercise with ingestion of the placebo than the carbohydrate (PLA: 4.57+/-0.12 mmol x l(-1); CHO: 5.49+/-0.11 mmol x l(-1); P<0.01). The pattern of change in plasma cortisol, circulating lymphocyte count and saliva immunoglobulin A secretion did not differ between the carbohydrate and placebo trials. Blood neutrophil counts were 14% higher 1 h after the placebo trial than the carbohydrate trial (PLA: 4.8+/-0.5x10(9) cells x l(-1); CHO: 4.2+/-0.5x10(9) cells x l(-1); P = 0.06), but the treatment had no effect on the degranulation response of blood neutrophils stimulated by bacterial lipopolysaccharide. We conclude that, although previous studies have shown that carbohydrate feeding is effective in attenuating immune responses to prolonged continuous strenuous exercise, the same cannot be said for a soccer-specific intermittent exercise protocol. When overall exercise intensity is moderate, and changes in plasma glucose, cortisol and immune variables are relatively small, it would appear that carbohydrate ingestion has only a minimal influence on the immune response to exercise.  相似文献   

5.
Ingesting carbohydrate plus protein following prolonged exercise may restore exercise capacity more effectively than ingestion of carbohydrate alone. The objective of the present study was to determine whether this potential benefit is a consequence of the protein fraction per se or simply due to the additional energy it provides. Six active males participated in three trials, each involving a 90-min treadmill run at 70% maximal oxygen uptake (run 1) followed by a 4-h recovery. At 30-min intervals during recovery, participants ingested solutions containing: (1) 0.8 g carbohydrate x kg body mass (BM)(-1) h(-1) plus 0.3 g kg(-1) h(-1) of whey protein isolate (CHO-PRO); (2) 0.8 g carbohydrate x kg BM(-1) h(-1) (CHO); or (3) 1.1 g carbohydrate x kg BM(-1) h(-1) (CHO-CHO). The latter two solutions matched the CHO-PRO solution for carbohydrate and for energy, respectively. Following recovery, participants ran to exhaustion at 70% maximal oxygen uptake (run 2). Exercise capacity during run 2 was greater following ingestion of CHO-PRO and CHO-CHO than following ingestion of CHO (P< or = 0.05) with no significant difference between the CHO-PRO and CHO-CHO treatments. In conclusion, increasing the energy content of these recovery solutions extended run time to exhaustion, irrespective of whether the additional energy originated from sucrose or whey protein isolate.  相似文献   

6.
Abstract

Ingesting carbohydrate plus protein following prolonged exercise may restore exercise capacity more effectively than ingestion of carbohydrate alone. The objective of the present study was to determine whether this potential benefit is a consequence of the protein fraction per se or simply due to the additional energy it provides. Six active males participated in three trials, each involving a 90-min treadmill run at 70% maximal oxygen uptake (run 1) followed by a 4-h recovery. At 30-min intervals during recovery, participants ingested solutions containing: (1) 0.8 g carbohydrate · kg body mass (BM)?1 · h?1 plus 0.3 g · kg?1 · h?1 of whey protein isolate (CHO-PRO); (2) 0.8 g carbohydrate · kg BM?1 · h?1 (CHO); or (3) 1.1 g carbohydrate · kg BM?1 · h?1 (CHO-CHO). The latter two solutions matched the CHO-PRO solution for carbohydrate and for energy, respectively. Following recovery, participants ran to exhaustion at 70% maximal oxygen uptake (run 2). Exercise capacity during run 2 was greater following ingestion of CHO-PRO and CHO-CHO than following ingestion of CHO (P ≤ 0.05) with no significant difference between the CHO-PRO and CHO-CHO treatments. In conclusion, increasing the energy content of these recovery solutions extended run time to exhaustion, irrespective of whether the additional energy originated from sucrose or whey protein isolate.  相似文献   

7.
In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min(-1)), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s(-1)) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s(-1)) (Cohen's d: 3.80 nM · s(-1)), whereas the increase from baseline in deoxygenated haemoglobin (by ~17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ~5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.  相似文献   

8.
Abstract

In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min?1), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s?1) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s?1) (Cohen's d: 3.80 nM · s?1), whereas the increase from baseline in deoxygenated haemoglobin (by ~17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ~5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.  相似文献   

9.
The aim of this study was to assess the effect of an acute bout of high-intensity intermittent exercise on saliva IgA concentration and alpha-amylase activity, since this type of training is commonly incorporated into the training programmes of endurance athletes and games players. Eight well-trained male games players took part in the study. They reported to the laboratory after an overnight fast and performed a 60-min cycle exercise task consisting of twenty 1-min periods at 100% VO2max, each separated by 2 min recovery at 30% VO2max. Unstimulated whole saliva was collected over a 5-min period into pre-weighed tubes and analysed for total protein, saliva IgA and alpha-amylase. The saliva flow rate ranged from 0.08 to 1.40 ml x min(-1) at rest and was not significantly affected by the exercise. The performance of the intermittent exercise bout did not affect the saliva IgA concentration, but caused a five-fold increase in alpha-amylase activity (P<0.01 compared with pre-exercise) and a three-fold increase in total protein concentration (P<0.01). These returned to pre-exercise values within 2.5 h post-exercise. It has been suggested that IgA concentration should be expressed as the ratio to total protein concentration, to correct for any concentrating effect due to evaporative loss of saliva water when breathing through the mouth (as in strenuous exercise). The present study clearly demonstrates that this is not appropriate, since there is an increase in salivary protein secretion rate immediately after exercise (571+/-77 microg x min(-1) compared with 218+/-71 microg x min(-1) pre-exercise; P<0.05). The increased saliva alpha-amylase activity after exercise may improve the protective effect of saliva, since this enzyme is known to inhibit bacterial attachment to oral surfaces. The saliva alpha-amylase secretion rate was lower immediately pre-exercise than at any other instant, which may have been due to anticipatory psychological stress, although the subjects were all familiar with interval exercise. This emphasizes the need for true resting non-stressed control conditions in future studies of the effects of exercise on saliva constituents.  相似文献   

10.
Abstract

The badminton serve requires great skill and may be affected by fatigue. The aim of the present study was to determine whether carbohydrate ingestion affects badminton performance. Nine male badminton players (age 25 ± 7 years, mass 80.6 ± 8.0 kg) attended the laboratory on three occasions. The first visit involved an incremental exercise test to exhaustion to determine peak heart rate. Participants were given 1 L of a carbohydrate-electrolyte drink or a matched placebo during the experimental trials. The accuracy of 10 long and 10 short serves was determined before and after exercise. The fatiguing exercise was 33 min in duration (83 ± 10% and 84 ± 8% peak heart rate for the placebo and carbohydrate trial respectively). Capillary blood samples (20 μL) were taken before and after exercise for determination of blood glucose and lactate. There was deterioration in long serve accuracy with fatigue (P = 0.002), which carbohydrate ingestion had a tendency to prevent (P = 0.077). There was no effect of fatigue (P = 0.402) or carbohydrate ingestion (P = 0.109) on short serve accuracy. There was no difference in blood glucose concentration between trials (P = 0.851). Blood lactate concentration was higher during the placebo trial (P = 0.016). These results suggest that only the long serve is influenced by fatigue and carbohydrate had a tendency to prevent the deterioration in performance.  相似文献   

11.
The badminton serve requires great skill and may be affected by fatigue. The aim of the present study was to determine whether carbohydrate ingestion affects badminton performance. Nine male badminton players (age 25 ± 7 years, mass 80.6 ± 8.0 kg) attended the laboratory on three occasions. The first visit involved an incremental exercise test to exhaustion to determine peak heart rate. Participants were given 1 L of a carbohydrate-electrolyte drink or a matched placebo during the experimental trials. The accuracy of 10 long and 10 short serves was determined before and after exercise. The fatiguing exercise was 33 min in duration (83 ± 10% and 84 ± 8% peak heart rate for the placebo and carbohydrate trial respectively). Capillary blood samples (20 μL) were taken before and after exercise for determination of blood glucose and lactate. There was deterioration in long serve accuracy with fatigue (P = 0.002), which carbohydrate ingestion had a tendency to prevent (P = 0.077). There was no effect of fatigue (P = 0.402) or carbohydrate ingestion (P = 0.109) on short serve accuracy. There was no difference in blood glucose concentration between trials (P = 0.851). Blood lactate concentration was higher during the placebo trial (P = 0.016). These results suggest that only the long serve is influenced by fatigue and carbohydrate had a tendency to prevent the deterioration in performance.  相似文献   

12.
13.
This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake (VO2 max)) 47.0 ± 7 ml · kg · min(-1)) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l(-1)) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l(-1), respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

14.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

15.
This study investigated whether performing repeated bouts of maximal voluntary isokinetic eccentric exercise (MAX1) on 3 (MAX3) and 6 days (MAX6) after the initial bout would produce significant changes in the indirect markers of muscle damage and total work. A secondary purpose was to determine whether participants' psychological maximal effort was equivalent to the physiological maximal effort during muscle soreness. Male university students were assigned randomly to a control group (n = 12) and a group that repeated the exercise (EX; n = 12). The MAX1 was 3 x 10 repetitions of the nondominant elbow flexors on the Cybex 6000 system at a speed of 60 deg/s. The EX group performed the same exercise 3 days and 6 days after MAX1. The range of motion and maximal isometric force (MIF), muscle soreness index, plasma creatine kinase, and glutamic-oxaloacetate transaminase activities were measured before and every 24 hr for 9 days after MAX1 for both groups. MIF was also assessed once before and immediately after each MAX for the EX group. There were no significant changes (p > .05) between the groups for all criterion measures, except for total amount of work (p < .05). It is concluded that strenuous voluntary isokinetic eccentric exercise performed with damaged muscles does not appear to exacerbate damage or influence the recovery process. Although individuals could perform repeated MAXs, the total work performed was significantly reduced. This has practical implications in strength training for coaches and athletes during muscle damage.  相似文献   

16.
Changes in workload are evident during many physical activities. The aim of this study was to assess total substrate metabolism when the temporal placement of a period of higher-intensity work (75% VO2max) was varied within a low-intensity exercise session (50% VO2max). One experimental trial (higher intensity first) comprised 5 min low-intensity work, followed by 15 min high-intensity work, followed by 40 min low-intensity work. The other trial (low intensity first) comprised 40 min low-intensity work, followed by 15 min high-intensity work, followed by 5 min low-intensity work. The trials were designed to achieve an identical total energy expenditure. Energy expenditure, fat and carbohydrate utilization were estimated by expired gas analysis and compared between conditions. Mean total energy expenditure during the higher-intensity phase was 1076 kJ and 1128 kJ in the high-intensity first and low-intensity first trials respectively (t6 = -3.76, P = 0.0047). Mean total energy expenditure for the whole trial was 3356 kJ and 3452 kJ in the high-intensity first and low-intensity first trials respectively (t6 = -3.48, P = 0.0065). Mean whole-trial fat utilization was 1753 kJ and 1857 kJ in the high-intensity first and low-intensity first trials respectively (t6 = -0.76, P = 0.24). Our findings suggest that changing the temporal placement of higher-intensity work within a low-intensity exercise session has a significant effect on total energy expenditure but not on the rate of fat oxidation.  相似文献   

17.
Abstract

Nine males cycled at 53% (s = 2) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.4°C, s = 0.2; relative humidity: 61%, s = 3). One litre of flavoured water at 10 (cold), 37 (warm) or 50°C (hot) was ingested 30 – 40 min into exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. Rectal and mean skin temperatures and heart rate were recorded. The gradient of rise in rectal temperature was influenced (P < 0.01) by drink temperature. Mean skin temperature was highest in the hot trial (cold trial: 34.2°C, s = 0.5; warm trial: 34.4°C, s = 0.5; hot trial: 34.7°C, s = 0.6; P < 0.01). Significant differences were observed in heart rate (cold trial: 132 beats · min?1, s = 13; warm trial: 134 beats · min?1, s = 12; hot trial: 139 beats · min?1, s = 13; P < 0.05). Exercise capacity was similar between trials (cold trial: 234 s, s = 69; warm trial: 214 s, s = 52; hot trial: 203 s, s = 53; P = 0.562). The heat load and debt induced via drinking resulted in appropriate thermoregulatory reflexes during exercise leading to an observed heat content difference of only 33 kJ instead of the predicted 167 kJ between the cold and hot trials. These results suggest that there may be a role for drink temperature in influencing thermoregulation during exercise.  相似文献   

18.
Nine males cycled at 53% (s = 2) of their peak oxygen uptake (VO(2peak)) for 90 min (dry bulb temperature: 25.4 degrees C, s = 0.2; relative humidity: 61%, s = 3). One litre of flavoured water at 10 (cold), 37 (warm) or 50 degrees C (hot) was ingested 30 - 40 min into exercise. Immediately after the 90 min of exercise, participants cycled at 95%VO(2peak) to exhaustion to assess exercise capacity. Rectal and mean skin temperatures and heart rate were recorded. The gradient of rise in rectal temperature was influenced (P < 0.01) by drink temperature. Mean skin temperature was highest in the hot trial (cold trial: 34.2 degrees C, s = 0.5; warm trial: 34.4 degrees C, s = 0.5; hot trial: 34.7 degrees C, s = 0.6; P < 0.01). Significant differences were observed in heart rate (cold trial: 132 beats . min(-1), s = 13; warm trial: 134 beats . min(-1), s = 12; hot trial: 139 beats . min(-1), s = 13; P < 0.05). Exercise capacity was similar between trials (cold trial: 234 s, s = 69; warm trial: 214 s, s = 52; hot trial: 203 s, s = 53; P = 0.562). The heat load and debt induced via drinking resulted in appropriate thermoregulatory reflexes during exercise leading to an observed heat content difference of only 33 kJ instead of the predicted 167 kJ between the cold and hot trials. These results suggest that there may be a role for drink temperature in influencing thermoregulation during exercise.  相似文献   

19.
Although much research has examined the relationship between exercise and affect, few studies have considered the effects of exercise bouts of different durations and few researchers have questioned the longer term effects that might be associated with acute exercise. The aim of this study was to compare the effects of the standard health recommended exercise duration of 30 min with a shorter (15 min) bout of exercise upon individuals' affect scores both during and after exercise. Twenty-three (mean age 22.4 years) physically active participants engaged in two counterbalanced cycle ergometer exercise conditions for 15 min (short bout) and 30 min (moderate bout). The participants completed the Subjective Exercise Experience Scale before, during, 5 min, 30 mins, 1 h and 2 h after both exercise conditions. A series of 2 x 6 within-participant repeated-measures analyses of variance for positive well-being (P <0.01), psychological distress (P <0.01) and fatigue (P <0.01) scores revealed significant time main effects, with improved scores over time. No significant differences were noted between the 15-min and 30-min exercise bouts. These results indicate that positive affective responses are experienced by exercisers after relatively short bouts of acute exercise and these effects can still be evident some time later.  相似文献   

20.
A high ambient temperature reduces the capacity to perform prolonged exercise. Total carbohydrate oxidation is less, and thus glycogen depletion is not limiting. Fluid ingestion in the heat should, therefore, focus on maintenance of hydration status rather than on substrate provision. Six healthy males cycled to exhaustion at 60% of maximum oxygen consumption (VO2max) with no drink, ingestion of a 15% carbohydrate-electrolyte drink (1.45+/-0.29 litres) or ingestion of a 2% carbohydrate-electrolyte drink (3.12+/-0.47 litres). The ambient temperature was 30.2+/-0.6 degrees C (mean +/- s), with a relative humidity of 71+/-1% and an air speed of approximately 0.7 m x s(-1) on all trials. Weighted mean skin temperature, rectal temperature and heart rate were recorded and venous samples drawn for determination of plasma volume changes, blood metabolites, serum electrolytes and osmolality. Expired gas was collected to estimate rates of fuel oxidation. Exercise capacity was significantly (P < 0.05) different in all trials. The median (range) time to exhaustion was 70.9 min (39.4-97.4 min) in the no-drink trial, 84.0 min (62.7-145 min) in the 15% carbohydrate trial and 118 min (82.6-168 min) in the 2% carbohydrate trial. The 15% carbohydrate drink resulted in significantly (P < 0.05) elevated blood glucose and total carbohydrate oxidation compared with the no-drink trial. The 2% carbohydrate drink restored plasma volume to pre-exercise values by the end of exercise. No differences were observed in other thermoregulatory or cardiorespiratory responses between trials. These results suggest that fluid replacement with a large volume of a dilute carbohydrate drink is beneficial during exercise in the heat, but the precise mechanisms for the improved exercise capacity are unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号