首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to develop and evaluate a methodology for quantifying the contributions of modelling error terms, as well as individual joint torque, gravitational force and motion-dependent terms, to the generation of ground reaction force (GRF), whose true value can be measured with high accuracy using a force platform. Dynamic contributions to the GRF were derived from the combination of (1) the equations of motion for the individual segments, (2) the equations for constraint conditions arising from the connection of adjacent segments at joints, and (3) the equations for anatomical constraint axes at certain joints. The contribution of the error term was divided into four components caused by fluctuation of segment lengths, geometric variation in the constraint joint axes, and residual joint force and moment errors. The proposed methodology was applied to the running motion of thirteen rear-foot strikers at a constant speed of 3.3?m/s. Modelling errors arose primarily from fluctuations in support leg segment lengths and rapid movement of the virtual joint between the foot and ground during the first 20% of stance phase. The magnitudes of these error contributions to the vertical and anterior/posterior components of the GRF are presented alongside the non-error contributions, of which the joint torque term was the largest.  相似文献   

2.
Measurement of ground reaction force (GRF) in running provides a direct indication of the loads to which the body is subjected at each foot-ground contact, and can provide an objective explanation for performance outcomes. Traditionally, the collection of three orthogonal component GRF data in running requires an athlete to complete a series of return loops along a laboratory based runway, within which a force platform is embedded, in order to collect data from a discrete footfall. The major disadvantages associated with this GRF data collection methodology include the inability to assess multiple consecutive foot contacts and the fact that measurements are typically confined to the laboratory. The objective of this research was to investigate the potential for wearable instrumentation to be employed, in conjunction with artificial neural network (ANN) and multiple linear regression (MLR) models, for the estimation of GRF in middle distance running. A modular wearable data acquisition system was developed to acquire in-shoe force (ISF) data. Matched data sets from wearable instrumentation (source data) and force plate (target data) records were collected from elite middle-distance runners under controlled laboratory conditions for the purposes of ANN and MLR model development (MD) and model validation (MV). In terms of statistical measures of prediction accuracy the MLR model was found to provide a superior level of accuracy for the prediction of the vertical and medio-lateral components of GRF and alternatively, the ANN model provided the most accurate predictions of the anterior-posterior component of GRF. The prediction accuracy of each component of GRF was found to be governed by the inherent signal variability, in which case the vertical and anterior-posterior components were more reliable and subsequently predicted significantly more accurately than the medio-lateral component. The emerging capability for obtaining continuous GRF records from wearable instrumentation has the potential to permit unprecedented quantification of training stress and competition demands in running.  相似文献   

3.
运用运动学、动力学同步测试分析的方法,揭示了不同水平短跑运动员支撑过程中支撑反作用力和人体运动学参数的差异及其相互关系,以认识短跑途中跑技术和支撑反作用力的特征。  相似文献   

4.
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.  相似文献   

5.
Abstract

Researchers and clinicians have suggested that overuse injuries to the lower back and lower extremities of figure skaters may be associated with the repeated high impact forces sustained during jump landings. Our primary aim was to compare the vertical ground reaction forces (GRFs) in freestyle figure skaters (n = 26) and non-skaters (n = 18) for the same barefoot single leg landing on a force plate from a 20 cm platform. Compared with non-skaters, skaters exhibited a significantly greater normalised peak GRF (3.50 ± 0.47 × body weight for skaters vs. 3.13 ± 0.45 × body weight for non-skaters), significantly shorter time to peak GRF (81.21 ± 14.01 ms for skaters vs. 93.81 ± 16.49 ms for non-skaters), and significantly longer time to stabilisation (TTS) of the GRF (2.38 ± 0.07 s for skaters vs. 2.22 ± 0.07 s for non-skaters). Skaters also confined their centre of pressure (CoP) to a significantly smaller mediolateral (M–L) (25%) and anterior–posterior (A–P) (40%) range during the landing phase, with the position of the CoP located in the mid to forefoot region. The narrower and more forward position of the CoP in skaters may at least partially explain the greater peak GRF, shorter time to peak, and longer TTS. Training and/or equipment modification serve as potential targets to decrease peak GRF by distributing it over a longer time period. More comprehensive studies including electromyography and motion capture are needed to fully characterise the unique figure skater landing strategy.  相似文献   

6.
The players' ability to achieve the greatest distance in kicking is determined by their efficiency in transferring kinetic energy from the body to the ball. The purpose of this study was to compare the kinetics and kinematics of the plant leg position between male and female collegiate soccer players during instep kicking. Twenty-three soccer players (11 males and 12 females) were filmed in both the sagittal and posterior views while performing a maximal instep kick. Plant leg kinetic data were also collected using an AMTI 1000 force platform. There were no significant differences between the sexes in plant leg position, but females had significantly greater trunk lean, plant leg angle, and medial-lateral ground reaction force than the males. Males showed higher vertical ground reaction forces at ball contact, but there were no significant differences in ball speed at take-off between the sexes. Ball speed at take-off was inversely related to peak anterior–posterior ground reaction force ( ? 0.65). The anatomical differences between the sexes were reflected in greater trunk lean and lower leg angle in the females.  相似文献   

7.
We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly–most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely–very likely greater mean propulsive force during the initial four steps and possibly–very likely larger mean net anterior–posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior–posterior force during initial and middle acceleration.  相似文献   

8.
Electromyographic (EMG) activity of the leg muscles and the ground reaction forces were recorded in 17 elite male middle-distance runners, who performed isometric maximal voluntary contractions (MVC) as well as running at different speeds. Electromyograms were recorded from the gluteus maximus, vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior. The results indicated that the averaged EMG (aEMG) activities of all the muscles studied increased (P?<?0.05) with increasing running speed, especially in the pre-contact and braking phases. At higher speeds, the aEMG activities of the gastrocnemius, vastus lateralis, biceps femoris and gluteus maximus exceeded 100% MVC in these same phases. These results suggest that maximal voluntary contractions cannot be used as an indicator of the full activation potential of human skeletal muscle. Furthermore, the present results suggest that increased pre-contact EMG potentiates the functional role of stretch reflexes, which subsequently increases tendomuscular stiffness and enhances force production in the braking and/or propulsive phases in running. Furthermore, a more powerful force production in the optimal direction for increasing running speed effectively requires increased EMG activity of the two-joint muscles (biceps femoris, rectus femoris and gastrocnemius) during the entire running cycle.  相似文献   

9.
Background:An extraordinary long-term running performance may benefit from low dynamic loads and a high load-bearing tolerance.An extraordinary runner(age=55 years,height=1.81 m,mass=92 kg) scheduled a marathon a day for 100 consecutive days.His running biomechanics and bone density were investigated to better understand successful long-term running in the master athlete.Methods:Overground running gait analysis and bone densitometry were conducted before the marathon-a-day challenge and near its...  相似文献   

10.
A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.  相似文献   

11.
Weight bearing (WB) activity is important for healthy skeletal development. The magnitude of loading during WB activities, especially upper limb impacts, has yet to be quantified in children. This study quantifies ground reaction forces (GRF) experienced by children performing WB activities and examines the contribution of body weight (BW) to GRF. Fifty children, aged 8–12 were recruited (34 males). GRF were measured using force plates during 20 upper and lower limb activities (such as landing on the feet and hands). Sex differences in GRF and associations between peak force and BW were examined using independent sample t-tests and linear regressions (p < 0.05), respectively. Lower limb GRF varied from 2-6x BW with no significant sex differences. GRF during upper limb activities varied from 1/3–1.7x BW with males experiencing significantly greater GRF for 25% of activities. BW was significantly associated with peak force in almost all activities; however, GRF variation explained by BW was wide-ranging across activities and not dependent on limb or activity type (static vs dynamic). Therefore, factors other than BW, such as technique, may be important in determining forces experienced by children performing WB activity and should be considered when choosing activities for WB activity interventions.  相似文献   

12.
Abstract

The purpose of the present study was to compare the three-dimensional kinematics of the lower extremities and ground reaction forces between the instep kick and the kick with the outside area of the foot (outstep kick) in pubertal soccer players. Ten pubertal soccer players performed consecutive kicking trials in random order after a two-step angled approach with the instep and the outstep portion of the foot. Three-dimensional data and ground reaction forces were measured during kicking. Paired t-tests indicated significantly higher (P < 0.05) ball speeds and ball/foot speed ratios for the instep kick compared with the outstep kick. Non-significant differences in angular and linear sagittal plane kinematic parameters, temporal characteristics, and ground reaction forces between the instep and outstep soccer kicks were observed (P > 0.05). In contrast, analysis of variance indicated that the outstep kick displayed higher hip internal rotation and abduction, knee internal rotation, and ankle inversion than the instep kick (P < 0.05). Our results suggest that the instep kick is more powerful than the outstep kick and that different types of kick require different types of skill training.  相似文献   

13.
There are differences in ground reaction force when wearing soccer boots compared with training shoes on a natural turf surface. Two natural-turf-covered force platforms, located outdoors in a field, allowed comparison of performance when six-studded soccer boots and soccer training shoes were worn during straight fast running (5.4 m s-1 ± 0.27 m s-1) and slow running (4.4 ms-1 ± 0.22 m s-1). Six male soccer players (mean age: 25 ± 4.18 years; mean mass 79.7 ±9.32 kg) struck the first platform with the right foot and the second platform with the left foot. In fast running, the mean vertical impact peak was significantly greater in soccer boots (2.706 BW) than in training shoes (2.496 BW) when both the right and left foot were considered together and averaged (P = 0.003). Similarly, the mean vertical impact peak loading rate was greater when wearing soccer boots at 26.09 BWs-1 compared to training shoes (21.32 BWs-1;P = 0.002). Notably, the mean vertical impact peak loading rate of the left foot (boots: 28.07 BWs-1; shoes: 22.52 BWs-1) was significantly greater than the right foot (boots: 24.11 BWs-1; shoes: 20.11 BWs-1) in both boots and shoes (P = 0.018). The braking force was greater for the left foot (P = 0.013). In contrast, mean peak vertical propulsion forces were greater for the right foot (P > 0.001) when either soccer boots or training shoes were considered. Similar significant trends were evident in slow running, and, notably, in both soccer boots and training shoes medial forces were greater for the left foot (P = 0.008) and lateral forces greater for the right foot (P = 0.011). This study showed the natural turf ground reaction force measurement system can highlight differences in footwear in an ecological environment. Greater forces and impact loading rates occurred during running activity in soccer boots than in training shoes, with soccer boots showing reduced shock attenuation at impact. Such findings may have implications for impact-related injuries with sustained exposure, especially on harder natural-turf surfaces. There were differences in the forces occurring at the right and left feet with the ground, thus suggesting the use of bipedal monitoring of ground reaction forces.  相似文献   

14.
Recurve archery is an Olympic sport that requires extreme precision, upper body strength and endurance. The purpose of this research was to quantify how postural stability variables both pre- and post-arrow release, draw force, flight time, arrow length and clicker reaction time, collectively, impacted on the performance or scoring outcomes in elite recurve archery athletes. Thirty-nine elite-level recurve archers (23 male and 16 female; mean age?=?24.7?±?7.3 years) from four different countries volunteered to participate in this study prior to competing at a World Cup event. An AMTI force platform (1000Hz) was used to obtain centre of pressure (COP) measurements 1s prior to arrow release and 0.5s post-arrow release. High-speed footage (200Hz) allowed for calculation of arrow flight time and score. Results identified clicker reaction time, draw force and maximum sway speed as the variables that best predicted shot performance. Specifically, reduced clicker reaction time, greater bow draw force and reduced postural sway speed post-arrow release were predictors of higher scoring shots. It is suggested that future research should focus on investigating shoulder muscle tremors at full draw in relation to clicker reaction time, and the effect of upper body strength interventions (specifically targeting the musculature around the shoulder girdle) on performance in recurve archers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号