首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article applies Bollen’s (1996) 2-stage least squares/instrumental variables (2SLS/IV) approach for estimating the parameters in an unconditional and a conditional second-order latent growth model (LGM). First, the 2SLS/IV approach for the estimation of the means and the path coefficients in a second-order LGM is derived. An empirical example is then used to show that 2SLS/IV yields estimates that are similar to maximum likelihood (ML) in the estimation of a conditional second-order LGM. Three subsequent simulation studies are then presented to show that the new approach is as accurate as ML and that it is more robust against misspecifications of the growth trajectory than ML. Together, these results suggest that 2SLS/IV should be considered as an alternative to the commonly applied ML estimator.  相似文献   

2.
Nonrecursive structural equation models generally take the form of feedback loops, involving 2 latent variables that are connected by 2 unidirectional paths, 1 starting with each variable and terminating in the other variable. Nonrecursive models belong to a larger class of path models that require the use of instrumental variables (IVs) to achieve model identification. Prior research has focused on SEM parameter estimation with IVs when indicators were continuous and normally distributed. Much less is known about how estimators function in the presence of categorical indicators, which are commonly used in the social sciences, such as with cognitive and affective instruments. In this study, there was specific interest in comparing the 2-stage least squares (2SLS) estimator and its categorical variant to other recommended estimators. This study compares the performance of several estimation approaches for fitting structural equation models with categorical indicator variables when IVs are necessary to obtain proper model estimates. Across conditions, 1 extension of the nonlinear 2SLS (N2SLS) approach, the nonlinear 3-stage least squares (N3SLS), which accounts for correlated errors among regressors within each model (as does the N2SLS), as well as correlations of errors across models, which N2SLS does not, appears to work the best among methods compared.  相似文献   

3.
This article introduces a new inferential test for acyclic structural equation models (SEM) without latent variables or correlated errors. The test is based on the independence relations predicted by the directed acyclic graph of the SEMs, as given by the concept of d-separation. A wide range of distributional assumptions and structural functions can be accommodated. No iterative fitting procedures are used, precluding problems involving convergence. Exact probability estimates can be obtained, thus permitting the testing of models with small data sets.  相似文献   

4.
Improper structures arising from the estimation of parameters in structural equation models (SEMs) are commonly an indication that the model is incorrectly specified. The use of boundary solutions cannot in general be recommended. Partly on the basis of theory given by Van Driel, and partly by example, suggestions are made for using the data as evidence of the type of misspecification and as a guide to the appropriate model. Three types of improper structure suggested by Van Driel are reviewed, and a 4th type is introduced.  相似文献   

5.
McDonald goodness‐of‐fit indices based on maximum likelihood, asymptotic distribution free, and the Satorra‐Bentler scale correction estimation methods are investigated. Sampling experiments are conducted to assess the magnitude of error for each index under variations in distributional misspecification, structural misspecification, and sample size. The Satorra‐Bentler correction‐based index is shown to have the least error under each distributional misspecification level when the model has correct structural specification. The scaled index also performs adequately when there is minor structural misspecification and distributional misspecification. However, when a model has major structural misspecification with distributional misspecification, none of the estimation methods perform adequately.  相似文献   

6.
This simulation study investigated the sensitivity of commonly used cutoff values for global-model-fit indexes, with regard to different degrees of violations of the assumption of uncorrelated errors in confirmatory factor analysis. It is shown that the global-model-fit indexes fell short in identifying weak to strong model misspecifications under both different degrees of correlated error terms, and various simulation conditions. On the basis of an example misspecification search, it is argued that global model testing must be supplemented by this procedure. Implications for the use of structural equation modeling are discussed.  相似文献   

7.
A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions.  相似文献   

8.
Assessing the correctness of a structural equation model is essential to avoid drawing incorrect conclusions from empirical research. In the past, the chi-square test was recommended for assessing the correctness of the model but this test has been criticized because of its sensitivity to sample size. As a reaction, an abundance of fit indexes have been developed. The result of these developments is that structural equation modeling packages are now producing a large list of fit measures. One would think that this progression has led to a clear understanding of evaluating models with respect to model misspecifications. In this article we question the validity of approaches for model evaluation based on overall goodness-of-fit indexes. The argument against such usage is that they do not provide an adequate indication of the “size” of the model's misspecification. That is, they vary dramatically with the values of incidental parameters that are unrelated with the misspecification in the model. This is illustrated using simple but fundamental models. As an alternative method of model evaluation, we suggest using the expected parameter change in combination with the modification index (MI) and the power of the MI test.  相似文献   

9.
Data collected from questionnaires are often in ordinal scale. Unweighted least squares (ULS), diagonally weighted least squares (DWLS) and normal-theory maximum likelihood (ML) are commonly used methods to fit structural equation models. Consistency of these estimators demands no structural misspecification. In this article, we conduct a simulation study to compare the equation-by-equation polychoric instrumental variable (PIV) estimation with ULS, DWLS, and ML. Accuracy of PIV for the correctly specified model and robustness of PIV for misspecified models are investigated through a confirmatory factor analysis (CFA) model and a structural equation model with ordinal indicators. The effects of sample size and nonnormality of the underlying continuous variables are also examined. The simulation results show that PIV produces robust factor loading estimates in the CFA model and in structural equation models. PIV also produces robust path coefficient estimates in the model where valid instruments are used. However, robustness highly depends on the validity of instruments.  相似文献   

10.
Regression mixture models are a new approach for finding differential effects which have only recently begun to be used in applied research. This approach comes at the cost of the assumption that error terms are normally distributed within classes. The current study uses Monte Carlo simulations to explore the effects of relatively minor violations of this assumption, the use of an ordered polytomous outcome is then examined as an alternative which makes somewhat weaker assumptions, and finally both approaches are demonstrated with an applied example looking at differences in the effects of family management on the highly skewed outcome of drug use. Results show that violating the assumption of normal errors results in systematic bias in both latent class enumeration and parameter estimates. Additional classes which reflect violations of distributional assumptions are found. Under some conditions it is possible to come to conclusions that are consistent with the effects in the population, but when errors are skewed in both classes the results typically no longer reflect even the pattern of effects in the population. The polytomous regression model performs better under all scenarios examined and comes to reasonable results with the highly skewed outcome in the applied example. We recommend that careful evaluation of model sensitivity to distributional assumptions be the norm when conducting regression mixture models.  相似文献   

11.
Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of this assumption. The use of an ordered polytomous outcome is then examined as an alternative that makes somewhat weaker assumptions, and finally both approaches are demonstrated with an applied example looking at differences in the effects of family management on the highly skewed outcome of drug use. Results show that violating the assumption of normal errors results in systematic bias in both latent class enumeration and parameter estimates. Additional classes that reflect violations of distributional assumptions are found. Under some conditions it is possible to come to conclusions that are consistent with the effects in the population, but when errors are skewed in both classes the results typically no longer reflect even the pattern of effects in the population. The polytomous regression model performs better under all scenarios examined and comes to reasonable results with the highly skewed outcome in the applied example. We recommend that careful evaluation of model sensitivity to distributional assumptions be the norm when conducting regression mixture models.  相似文献   

12.
When conducting longitudinal research, the investigation of between-individual differences in patterns of within-individual change can provide important insights. In this article, we use simulation methods to investigate the performance of a model-based exploratory data mining technique—structural equation model trees (SEM trees; Brandmaier, Oertzen, McArdle, & Lindenberger, 2013)—as a tool for detecting population heterogeneity. We use a latent-change score model as a data generation model and manipulate the precision of the information provided by a covariate about the true latent profile as well as other factors, including sample size, under the possible influences of model misspecifications. Simulation results show that, compared with latent growth curve mixture models, SEM trees might be very sensitive to model misspecification in estimating the number of classes. This can be attributed to the lower statistical power in identifying classes, resulting from smaller differences of parameters prescribed by the template model between classes.  相似文献   

13.
In educational and psychological measurement, a person-fit statistic (PFS) is designed to identify aberrant response patterns. For parametric PFSs, valid inference depends on several assumptions, one of which is that the item response theory (IRT) model is correctly specified. Previous studies have used empirical data sets to explore the effects of model misspecification on PFSs. We further this line of research by using a simulation study, which allows us to explore issues that may be of interest to practitioners. Results show that, depending on the generating and analysis item models, Type I error rates at fixed values of the latent variable may be greatly inflated, even when the aggregate rates are relatively accurate. Results also show that misspecification is most likely to affect PFSs for examinees with extreme latent variable scores. Two empirical data analyses are used to illustrate the importance of model specification.  相似文献   

14.
15.
We examine some of the positions put forth in various arguments related to the proper number of factors and proper number of steps when using structural equation models. Although we agree with Hayduk and Glaser (2000) on a number of points, we do disagree on the nature of determining the number of factors in a model and in the use of the 2-step strategy. We see the issue in estimating structural equation models as fundamentally a problem of appropriately specifying a model based on our theoretical concerns, then appropriately diagnosing ills in our models in a manner that is least likely to lead us astray. We report summary results from sets of simulations and provide a detailed discussion of 1 attempt to respecify a model. Our conclusions point to the inherent difficulty in respecifying models that do not fit, the similarity in results regardless of using 1-step or 2-step strategies when estimating models with only minor misspecifications, and the value of the 2-step procedure to provide slightly better clues in our search for a better fitting model.  相似文献   

16.
As with any psychometric models, the validity of inferences from cognitive diagnosis models (CDMs) determines the extent to which these models can be useful. For inferences from CDMs to be valid, it is crucial that the fit of the model to the data is ascertained. Based on a simulation study, this study investigated the sensitivity of various fit statistics for absolute or relative fit under different CDM settings. The investigation covered various types of model–data misfit that can occur with the misspecifications of the Q‐matrix, the CDM, or both. Six fit statistics were considered: –2 log likelihood (–2LL), Akaike's information criterion (AIC), Bayesian information criterion (BIC), and residuals based on the proportion correct of individual items (p), the correlations (r), and the log‐odds ratio of item pairs (l). An empirical example involving real data was used to illustrate how the different fit statistics can be employed in conjunction with each other to identify different types of misspecifications. With these statistics and the saturated model serving as the basis, relative and absolute fit evaluation can be integrated to detect misspecification efficiently.  相似文献   

17.
孙营 《茂名学院学报》2013,(3):71-74,78
研究了变系数联立模型的参数的估计问题,利用变窗宽局部线性两阶段最小二乘法对变系数联立模型的系数进行了估计,进而得到了估计量的大样本性质。  相似文献   

18.
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent classes. The procedures capitalize on the assumption that, due to mean differences between two classes, item covariances within class are smaller than item covariances between the classes. FMM goes beyond class detection and permits the specification of hypothesis-based within-class covariance structures ranging from local independence to multidimensional within-class factor models. In principle, FMM permits the comparison of alternative models using likelihood-based indexes. These advantages come at the price of distributional assumptions. In addition, models are often highly parameterized and susceptible to misspecifications of the within-class covariance structure.

Following an illustration with an empirical data set of binary depression items, the MAXEIG procedure and FMM are compared in a simulation study focusing on class detection and the assignment of subjects to the latent classes. FMM generally outperformed MAXEIG in terms of class detection and class assignment. Substantially different class sizes negatively impacted the performance of both approaches, whereas low class separation was much more problematic for MAXEIG than for the FMM.  相似文献   

19.
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test statistics. A modification to the Satorra–Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the 4 test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies 7 sample sizes and 3 distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ2 test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra–Bentler scaled test statistic performed best overall, whereas the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.  相似文献   

20.
Empirical researchers maximize their contribution to theory development when they compare alternative theory‐inspired models under the same conditions. Yet model comparison tools in structural equation modeling—χ2 difference tests, information criterion measures, and screening heuristics—have significant limitations. This article explores the use of the Friedman method of ranks as an inferential procedure for evaluating competing models. This approach has attractive properties, including limited reliance on sample size, limited distributional assumptions, an explicit multiple comparison procedure, and applicability to the comparison of nonnested models. However, this use of the Friedman method raises important issues regarding the lack of independence of observations and the power of the test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号