首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>在高中数学中,有一类函数问题需要利用导数方法探究函数f(x)在区间D上是否穿过x轴单调递增或单调递减.对此类问题,许多学生找不到突破口,甚至束手无策.以下结合实例探讨判断函数f(x)在区间D上是否穿过x轴单调递增或单调递减的策略.1判断函数f(x)的值的符号例1已知a∈R,关于x的方程x/(x2+x+2)=a最多有()个实数解.A.1 B.2 C.3 D.4  相似文献   

2.
一、求函数解析式【例1】设y=f(x)为三次函数,且图象关于原点对称,当x=1时,f(x)取得极小值-2,求f(x)的解析式.解:设f(x)=ax3 bx2 cx d(a≠0),由于其关于原点对称,为奇函数.故b=d=0.所以f(x)=ax3 cx,由f′(x)=3ax2 c,且x=1时,f(x)有极小值-2得f′(1)=3a c=0,f(1)=a c=-2,解之,得a=1,c=-3,所以f(x)=x3-3x.二、求函数单调区间与判断函数单调性【例2】求f(x)=x3 3x的单调区间.分析:首先确定f(x)的定义域,再在定义域上根据导函数f′(x)的符号来确定f(x)的单调区间.解:f(x)的定义域为(-∞,0)∪(0, ∞)f′(x)=3x2-3x2=3(x2 1)(x 1)(x-1)x2由于当x<-…  相似文献   

3.
已知函数y=f(x)的解析式,我们可以确定f(x)的定义域、值域、单调区间等函数性质。反之,若函数f(x)的解析式中含有参数,又已知f(x)的  相似文献   

4.
函数的单调性是函数最重要的性质之一,而利用导数解决函数的单调性问题,是近几年高考考查的重点和热点之一,也是学生感到比较棘手的一类问题.该类问题主要有两种类型:一是利用导数判断函数的单调性;二是由函数在某区间上的单调性求参数的取值范围.类型一利用导数判断函数的单调性解决此类问题的依据是:设函数f(x)在某个区间(a,b)内的导数为f’(x),则(1)若f’(x)>0,则函数f(x)在区间(a,b)内递增;  相似文献   

5.
一、利用导数求单调区间例1已知函数f(x)=x3 bx2 cx d,它的图像过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y 7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.解析(1)由函数f(x)的图像过点P(0,2),可知d=2,所以f(x)=x3 bx2 cx 2,则有f′(x)=3x2 2bx c.由函数f(x)在  相似文献   

6.
函数的单调性可以从八个方面理解 ,且每一种理解都有其应用价值 ,分述如下 :设函数 y=f(x)的定义域为 1 ,D为I内的某个区间 .1 宏观理解在区间D上 f(x)的图象上升 (下降 ) f(x)是区间D上的增函数 (减函数 ) .例 1 已知a0 ,那么|f(x) |在区间 [a ,b]上 (   )A 单调递减 ,且 f(x) >0B .单调递增 ,且 f(x) >0C .单调递减 ,且 f(x) <0D .单调递增 ,且 f(x) <0解 取a =- 3,b=- 2 ,利用数形结合画出示意图 ,观察图象知|f(x) |在区间 [-3,- 2 ]上单调递增且…  相似文献   

7.
设函数f(x)定义在区间I上且x1,x2∈I,则①若函数f(x)在区间I上是单调增(或减)函数,则x1f(x2)).②若函数f(x)在区间I上是单调函数,则x1=x2f(x1)=f(x2).③若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.④若函数f(x)与g(x)的单调性相同,则在它们公共的定义域内,函数f(x) g(x)亦与它们的单调性相同.⑤复合函数y=f(u)(u=g(x))的单调性适合“同增异减”规律,即若f(x)与g(x)的单调性相同(或相异),则y=f[g(x)]为增(或减)函数.⑥互为反函数的两个函数在各自的定义域内具有相同的单调性.运用…  相似文献   

8.
在教学过程中,笔者发现学生在求解函数单调区间时出现了一系列的问题,本文中对于学生解题过程中出现的误区进行分析,并尝试提出一些解决办法。一、对函数单调区间定义理解的误区(一)对函数单调区间定义的理解误区函数单调区间的定义:若函数y=f(x)在某个区间是增函数(或减函数),就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调递增区间(或单调递减区间),此时就说函数y=f(x)是这一区间上的单调函数。  相似文献   

9.
《海南教育》2013,(2):98-99
<正>在教学过程中,笔者发现学生在求解函数单调区间时出现了一系列的问题,本文中对于学生解题过程中出现的误区进行分析,并尝试提出一些解决办法。一、对函数单调区间定义理解的误区(一)对函数单调区间定义的理解误区函数单调区间的定义:若函数y=f(x)在某个区间是增函数(或减函数),就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调递增区间(或单调递减区间),此时就说函数y=f(x)是这一区间上的单调函数。  相似文献   

10.
确定函数f(x)在区间(a,6)上的单调性,一般都是根据函数单调性的定义作判断.但是,用导数法判断函数的单调性比用定义法更简捷更有效. 设函数f(x)在某个区间内可导,如果f’(x)>0,则f(x)为增函数;如果f’(x)<0,则f(x)为减函数.简言为:导数为正,函数为增;导数为负,函数为减.这个定理是利用导数判断单调性的理论依据.  相似文献   

11.
我们学习过函数单调性的定义:如果对于函数f(x)定义域内的某区间上的任意两个自变量的值x1,x2,当x1f(x2)],那么就说f(x)在这个区间上是增(减)函数.此时,就说f(x)在这一区间上具有(严格的)单调性,这一区间叫做f(x)的单调区间.  相似文献   

12.
在高中数学中,有一类函数问题需要利用导数方法探究函数f( x)在区间D上是否穿过x轴单调递增或单调递减。对此类问题,许多学生找不到突破口,甚至束手无策。以下结合实例探讨判断函数f( x)在区间D上是否穿过x轴单调递增或单调递减的策略。  相似文献   

13.
正1."单调性概念理解"的严谨性缺失书本定义:设定义在某区间上的函数y=f(x),如果f'(x)0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)0,那么函数y=f(x)在这个区间内单调递减.理解这正是我们同学用来解决求函数单调区间的依据,但同学们往往忽略了这只是函数在这个区间上单调递增或递减的一个充分条件,而并非必要条件.  相似文献   

14.
一、函数单调性的定义1.给定区间D上的任意x1、x2,如果x1f(x2),则函数f(x)为这个区间D上的递减函数.二、函数单调性的理解  相似文献   

15.
设函数f(x)定义在区间J上且zl,z2∈I,则 ①若函数f(x)在区间f上是单调增(或减)函数,则z1f(xz)). ②若函数f(x)在区间J上是单调函数,则z、一z2㈢厂(z1)一f(x2). ③若函数_厂(z)在区间J上是单调函数且存在反函数, 则f(x)一厂’(z)∞厂(z)一z. ④若函数厂(z)在区间,上是单调函数,则方程f(x)一0在区间工上至多有一个实数根. 运用上述性质可解答下面一些非函数问题. 1.求代数式值 例1 设a,卢分别是方程log 2x+z一3—0和2r+z一3—0的根,求8+卢的值. 解 由2。一3一z>0得 log 2(3一z)一z,即log 2(3一z)+(3一z)…  相似文献   

16.
一、定义法设x1,x2是函数f(x)定义域上的任意两个数,且x1f(x2),则此函数为减函数. 例1 (2001年春季高考题)设函数f(x)=x+a/x+b(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.  相似文献   

17.
由函数单调性的定义容易知道:(1)若函数f(x)在区间I上单调递增,且x1,x2∈I,则f(x1)x2;(3)若函数f(x)在区间I上单调,且x1,x2∈I,则f(x1)=f(x2)x1=x2;根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用的技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.下面举例说明这一思想在解题中的若干应用.一、求值例1设x,y为实数,且满足(x-1)3+1997(x-1)=-1(y-1)3+1997(y-1)=1,则x+y=.解:由已知条件,可得:(x-1)3+1997(x…  相似文献   

18.
一、关系结论设f(x)是定义域区间上的可导函数.1.(单调性)若函数f(x)的图象在某区间(a,b)内单调递增,则其导函数f′(x)在该区间内的图象必在x轴上方(或与x轴相切);若  相似文献   

19.
一、导数与函数单调性相关问题例1已知a!R,求函数f(x)=x2eax的单调区间.解析函数f(x)的导函数f′(x)=2xeax ax2eax=(2x ax2)eax.(1)当a=0时,若x<0,则f′(x)<0;若x>0,则f′(x)>0.故当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0, ∞)内为增函数.(2)当a>0时,由2x ax2>0,解得  相似文献   

20.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号